Suppr超能文献

CVD22:探讨肌钙蛋白与 D-二聚体、死亡率和 COVID-19 患者 CK-MB 之间关系的可解释人工智能。

CVD22: Explainable artificial intelligence determination of the relationship of troponin to D-Dimer, mortality, and CK-MB in COVID-19 patients.

机构信息

Bilecik Seyh Edebali University, Bioengineering Department, 11230, Bilecik, Turkey; Informatics Institute, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.

Süleyman Demirel University, Engineering Faculty, Department of Computer Engineering, Isparta 32260, Turkey.

出版信息

Comput Methods Programs Biomed. 2023 May;233:107492. doi: 10.1016/j.cmpb.2023.107492. Epub 2023 Mar 18.

Abstract

BACKGROUND AND PURPOSE

COVID-19, which emerged in Wuhan (China), is one of the deadliest and fastest-spreading pandemics as of the end of 2019. According to the World Health Organization (WHO), there are more than 100 million infectious cases worldwide. Therefore, research models are crucial for managing the pandemic scenario. However, because the behavior of this epidemic is so complex and difficult to understand, an effective model must not only produce accurate predictive results but must also have a clear explanation that enables human experts to act proactively. For this reason, an innovative study has been planned to diagnose Troponin levels in the COVID-19 process with explainable white box algorithms to reach a clear explanation.

METHODS

Using the pandemic data provided by Erzurum Training and Research Hospital (decision number: 2022/13-145), an interpretable explanation of Troponin data was provided in the COVID-19 process with SHApley Additive exPlanations (SHAP) algorithms. Five machine learning (ML) algorithms were developed. Model performances were determined based on training, test accuracies, precision, F1-score, recall, and AUC (Area Under the Curve) values. Feature importance was estimated according to Shapley values by applying the SHApley Additive exPlanations (SHAP) method to the model with high accuracy. The model created with Streamlit v.3.9 was integrated into the interface with the name CVD22.

RESULTS

Among the five-machine learning (ML) models created with pandemic data, the best model was selected with the values of 1.0, 0.83, 0.86, 0.83, 0.80, and 0.91 in train and test accuracy, precision, F1-score, recall, and AUC values, respectively. As a result of feature selection and SHApley Additive exPlanations (SHAP) algorithms applied to the XGBoost model, it was determined that DDimer mean, mortality, CKMB (creatine kinase myocardial band), and Glucose were the features with the highest importance over the model estimation.

CONCLUSIONS

Recent advances in new explainable artificial intelligence (XAI) models have successfully made it possible to predict the future using large historical datasets. Therefore, throughout the ongoing pandemic, CVD22 (https://cvd22covid.streamlitapp.com/) can be used as a guide to help authorities or medical professionals make the best decisions quickly.

摘要

背景与目的

2019 年底,源自中国武汉的 COVID-19 是目前为止最致命和传播速度最快的大流行病之一。据世界卫生组织(WHO)称,全球有超过 1 亿例感染病例。因此,研究模型对于管理大流行情景至关重要。然而,由于这种传染病的行为如此复杂且难以理解,有效的模型不仅必须产生准确的预测结果,而且还必须具有清晰的解释,以使人类专家能够主动采取行动。出于这个原因,已经计划进行一项创新性研究,使用可解释的白盒算法在 COVID-19 过程中诊断肌钙蛋白水平,以达到清晰的解释。

方法

利用 Erzurum 培训和研究医院提供的大流行数据(决策编号:2022/13-145),使用 SHapley Additive exPlanations(SHAP)算法对 COVID-19 过程中的肌钙蛋白数据进行可解释的解释。开发了五种机器学习(ML)算法。根据训练、测试准确性、精度、F1 分数、召回率和 AUC(曲线下面积)值来确定模型性能。根据 SHAP 算法,通过应用于高精度模型的 Shapley 值来估计特征重要性。使用 Streamlit v.3.9 创建的模型与名称 CVD22 的界面集成。

结果

在使用大流行数据创建的五个机器学习(ML)模型中,根据训练和测试准确性、精度、F1 分数、召回率和 AUC 值,选择具有 1.0、0.83、0.86、0.83、0.80 和 0.91 值的最佳模型。通过对 XGBoost 模型应用特征选择和 SHapley Additive exPlanations(SHAP)算法,确定 D-二聚体平均值、死亡率、CKMB(肌酸激酶心肌带)和葡萄糖是模型估计中最重要的特征。

结论

新的可解释人工智能(XAI)模型的最新进展成功地使用大型历史数据集来预测未来。因此,在整个持续的大流行期间,可以使用 CVD22(https://cvd22covid.streamlitapp.com/)作为指导,帮助当局或医疗专业人员快速做出最佳决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3a3/10023204/740a2d1a7d53/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验