Wang Yanwen, Yang Jiayu, Cai Miao, Liu Xiaoli, Lu Kang, Lou Yue, Li Zhu
Neurology Department, Zhejiang Hospital, Zhejiang 310013, China.
School of Electronics and Information, Hangzhou Dianzi University, Zhejiang 310018, China.
Med Eng Phys. 2023 Mar;113:103962. doi: 10.1016/j.medengphy.2023.103962. Epub 2023 Feb 23.
Essential tremor (ET) is one of the most common neurological disorders, and its mainly clinical symptoms, including patient hand's kinetic tremor, dystonia, ataxia, etc., would influence the daily life of patients inordinately. Current ET diagnosis highly replies on the clinical evaluation and neurological examination, so the objective measurement indicators are particularly important in the auxiliary diagnosis of ET. In this research, the Archimedes spiral line freehand sketching samples without template assistance is collected and the Convolutional Neural Network (CNN) model of optimized structure is adopted to fully analyze the tremor, spacing of turns, shape, etc. shown in the handwriting samples of patients with ET, including the following main process: characteristics extraction, model visualization and subregional relevance evaluation. Dropout is used as a regularization technique in the network structure. The test group consisted of 50 patients with confirmed ET and the control group consisted of 40 healthy individuals. The main research objectives of this paper comprise two points: on the one hand, to achieve effective automatic classification of patients with ET and healthy controls using a scheme combining deep learning and simple hand mapping for the purpose of primary disease screening; on the other hand, to design sub-regional automatic classification experiments to demonstrate that Archimedean spiral hand drawings of patients with ET do have distinct local features, and to lay the experimental foundation for future hand drawing-based automatic aid for the identification of a variety of neurodegenerative diseases. Our model's average accuracy rate in test set reaches 89.3%, and average AUC is 0.972, with favorable stability and generalization performance. Besides, subregional characteristics recognition proofs that the spiral line samples of most of the patients with ET show more category-related characteristics in the local area of upper right, which provides evidences and theory update for predecessors' medical research.
特发性震颤(ET)是最常见的神经系统疾病之一,其主要临床症状,包括患者手部的运动性震颤、肌张力障碍、共济失调等,会对患者的日常生活造成极大影响。目前ET的诊断高度依赖临床评估和神经学检查,因此客观测量指标在ET的辅助诊断中尤为重要。在本研究中,收集了无模板辅助的阿基米德螺旋线徒手绘制样本,并采用优化结构的卷积神经网络(CNN)模型对ET患者笔迹样本中显示的震颤、螺距、形状等进行全面分析,主要包括以下过程:特征提取、模型可视化和子区域相关性评估。在网络结构中使用随机失活作为正则化技术。测试组由50例确诊的ET患者组成,对照组由40名健康个体组成。本文的主要研究目标包括两点:一方面,采用深度学习与简单手部绘图相结合的方案,实现ET患者与健康对照的有效自动分类,用于初步疾病筛查;另一方面,设计子区域自动分类实验,证明ET患者的阿基米德螺旋线手绘图确实具有明显的局部特征,为未来基于手绘图的多种神经退行性疾病自动辅助识别奠定实验基础。我们的模型在测试集中的平均准确率达到89.3%,平均AUC为0.972,具有良好的稳定性和泛化性能。此外,子区域特征识别证明,大多数ET患者的螺旋线样本在右上角局部显示出更多与类别相关的特征,为前人的医学研究提供了证据和理论更新。