State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
Nat Commun. 2023 Mar 25;14(1):1669. doi: 10.1038/s41467-023-37288-0.
Cytochrome P450 enzymes play important roles in the biosynthesis of macrolide antibiotics by mediating a vast variety of regio- and stereoselective oxidative modifications, thus improving their chemical diversity, biological activities, and pharmaceutical properties. Tremendous efforts have been made on engineering the reactivity and selectivity of these useful biocatalysts. However, the 20 proteinogenic amino acids cannot always satisfy the requirement of site-directed/random mutagenesis and rational protein design of P450 enzymes. To address this issue, herein, we practice the semi-rational non-canonical amino acid mutagenesis for the pikromycin biosynthetic P450 enzyme PikC, which recognizes its native macrolide substrates with a 12- or 14-membered ring macrolactone linked to a deoxyamino sugar through a unique sugar-anchoring mechanism. Based on a semi-rationally designed substrate binding strategy, non-canonical amino acid mutagenesis at the His238 position enables the unnatural activities of several PikC mutants towards the macrolactone precursors without any sugar appendix. With the aglycone hydroxylating activities, the pikromycin biosynthetic pathway is rewired by the representative mutant PikC carrying a p-acetylphenylalanine residue at the His238 position and a promiscuous glycosyltransferase. Moreover, structural analysis of substrate-free and three different enzyme-substrate complexes of PikC provides significant mechanistic insights into the substrate binding and catalytic selectivity of this paradigm biosynthetic P450 enzyme.
细胞色素 P450 酶通过介导各种区域和立体选择性氧化修饰在大环内酯抗生素的生物合成中发挥重要作用,从而提高其化学多样性、生物活性和药物性质。人们已经做出了巨大的努力来工程化这些有用的生物催化剂的反应性和选择性。然而,20 种蛋白质氨基酸并不总是满足 P450 酶的定点/随机突变和合理蛋白质设计的要求。为了解决这个问题,本文对识别其天然大环内酯底物的 pikromycin 生物合成 P450 酶 PikC 进行了半理性非天然氨基酸突变,该酶通过独特的糖锚定机制将具有 12 或 14 元环大环内酯的糖基与脱氧氨基糖连接。基于半理性设计的底物结合策略,在 His238 位置进行非天然氨基酸突变,使几个 PikC 突变体对没有任何糖附加物的大环内酯前体具有非天然活性。具有糖苷配基羟化活性,通过在 His238 位置携带对乙酰基苯丙氨酸残基和一种混杂糖基转移酶的代表性突变 PikC 对 pikromycin 生物合成途径进行了重新布线。此外,对无底物和 PikC 的三种不同酶-底物复合物的结构分析提供了对这种范例生物合成 P450 酶的底物结合和催化选择性的重要机制见解。