Suppr超能文献

缺乏机械性疾病定义和相应的关联数据阻碍了网络医学及其他领域的发展。

Lacking mechanistic disease definitions and corresponding association data hamper progress in network medicine and beyond.

机构信息

Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.

Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany.

出版信息

Nat Commun. 2023 Mar 25;14(1):1662. doi: 10.1038/s41467-023-37349-4.

Abstract

A long-term objective of network medicine is to replace our current, mainly phenotype-based disease definitions by subtypes of health conditions corresponding to distinct pathomechanisms. For this, molecular and health data are modeled as networks and are mined for pathomechanisms. However, many such studies rely on large-scale disease association data where diseases are annotated using the very phenotype-based disease definitions the network medicine field aims to overcome. This raises the question to which extent the biases mechanistically inadequate disease annotations introduce in disease association data distort the results of studies which use such data for pathomechanism mining. We address this question using global- and local-scale analyses of networks constructed from disease association data of various types. Our results indicate that large-scale disease association data should be used with care for pathomechanism mining and that analyses of such data should be accompanied by close-up analyses of molecular data for well-characterized patient cohorts.

摘要

网络医学的一个长期目标是用对应于不同病理机制的健康状况亚型来替代我们当前主要基于表型的疾病定义。为此,分子和健康数据被建模为网络,并针对病理机制进行挖掘。然而,许多这样的研究依赖于大规模的疾病关联数据,其中疾病是使用网络医学领域旨在克服的基于表型的疾病定义进行注释的。这就提出了一个问题,即机制上不充分的疾病注释在多大程度上会扭曲使用此类数据进行病理机制挖掘的研究结果。我们使用从各种类型的疾病关联数据构建的网络的全局和局部尺度分析来解决这个问题。我们的结果表明,应该谨慎使用大规模疾病关联数据进行病理机制挖掘,并且应该对这类数据进行分析,并结合对具有明确特征的患者队列的分子数据的近距离分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验