One Biosciences, Paris, France.
CNRS UMR3244, Institut Curie, PSL University, Paris, France.
Nat Commun. 2023 Mar 25;14(1):1668. doi: 10.1038/s41467-023-37410-2.
Signaling pathways can be activated through various cascades of genes depending on cell identity and biological context. Single-cell atlases now provide the opportunity to inspect such complexity in health and disease. Yet, existing reference tools for pathway scoring resume activity of each pathway to one unique common metric across cell types. Here, we present MAYA, a computational method that enables the automatic detection and scoring of the diverse modes of activation of biological pathways across cell populations. MAYA improves the granularity of pathway analysis by detecting subgroups of genes within reference pathways, each characteristic of a cell population and how it activates a pathway. Using multiple single-cell datasets, we demonstrate the biological relevance of identified modes of activation, the robustness of MAYA to noisy pathway lists and batch effect. MAYA can also predict cell types starting from lists of reference markers in a cluster-free manner. Finally, we show that MAYA reveals common modes of pathway activation in tumor cells across patients, opening the perspective to discover shared therapeutic vulnerabilities.
信号通路可以通过各种基因级联反应激活,具体取决于细胞身份和生物背景。单细胞图谱现在为在健康和疾病中检查这种复杂性提供了机会。然而,现有的通路评分参考工具将每种通路的活性归结为细胞类型之间的一个独特的通用指标。在这里,我们提出了 MAYA,这是一种计算方法,可实现对细胞群体中生物通路的不同激活模式的自动检测和评分。MAYA 通过检测参考通路中的基因亚组来提高通路分析的粒度,每个亚组都代表一种细胞群体及其激活通路的方式。使用多个单细胞数据集,我们证明了所识别的激活模式的生物学相关性、MAYA 对嘈杂的通路列表和批次效应的稳健性。MAYA 还可以在无聚类的情况下,从参考标记列表预测细胞类型。最后,我们表明 MAYA 揭示了肿瘤细胞中跨患者的通路激活的常见模式,为发现共享的治疗弱点开辟了前景。