Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico.
Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
Sci Rep. 2023 Mar 25;13(1):4890. doi: 10.1038/s41598-023-32074-w.
We aim to study the temporal patterns of activity in points of interest of cities around the world. In order to do so, we use the data provided by the online location-based social network Foursquare, where users make check-ins that indicate points of interest in the city. The data set comprises more than 90 million check-ins in 632 cities of 87 countries in 5 continents. We analyzed more than 11 million points of interest including all sorts of places: airports, restaurants, parks, hospitals, and many others. With this information, we obtained spatial and temporal patterns of activities for each city. We quantify similarities and differences of these patterns for all the cities involved and construct a network connecting pairs of cities. The links of this network indicate the similarity of temporal visitation patterns of points of interest between cities and is quantified with the Kullback-Leibler divergence between two distributions. Then, we obtained the community structure of this network and the geographic distribution of these communities worldwide. For comparison, we also use a Machine Learning algorithm-unsupervised agglomerative clustering-to obtain clusters or communities of cities with similar patterns. The main result is that both approaches give the same classification of five communities belonging to five different continents worldwide. This suggests that temporal patterns of activity can be universal, with some geographical, historical, and cultural variations, on a planetary scale.
我们旨在研究全球城市热点的活动时间模式。为此,我们使用在线基于位置的社交网络 Foursquare 提供的数据,用户在该网络上签到以表明城市中的兴趣点。该数据集包含来自 5 大洲 87 个国家的 632 个城市的 9000 多万次签到。我们分析了包括机场、餐厅、公园、医院等各种场所在内的 1100 多万个兴趣点。有了这些信息,我们获得了每个城市的活动时空模式。我们对所有参与城市的这些模式的相似性和差异性进行了量化,并构建了一个连接城市对的网络。该网络的链接表示城市之间兴趣点时间访问模式的相似性,并通过两个分布之间的 Kullback-Leibler 散度进行量化。然后,我们获得了该网络的社区结构以及这些社区在全球的地理分布。为了进行比较,我们还使用了一种机器学习算法-无监督凝聚聚类-来获得具有相似模式的城市聚类或社区。主要结果是,这两种方法都给出了全球五个不同大陆的五个不同社区的相同分类。这表明,活动时间模式可能是普遍的,在行星尺度上存在一些地理、历史和文化方面的差异。