Suppr超能文献

生物合成金纳米粒子的盖帽剂的命运和酶在其表面的吸附。

Fate of the capping agent of biologically produced gold nanoparticles and adsorption of enzymes onto their surface.

机构信息

Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic.

Center of Molecular Structure, Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague, Czech Republic.

出版信息

Sci Rep. 2023 Mar 25;13(1):4916. doi: 10.1038/s41598-023-31792-5.

Abstract

Enzymotherapy based on DNase I or RNase A has often been suggested as an optional strategy for cancer treatment. The efficacy of such procedures is limited e.g. by a short half-time of the enzymes or a low rate of their internalization. The use of nanoparticles, such as gold nanoparticles (AuNPs), helps to overcome these limits. Specifically, biologically produced AuNPs represent an interesting variant here due to naturally occurring capping agents (CA) on their surface. The composition of the CA depends on the producing microorganism. CAs are responsible for the stabilization of the nanoparticles, and promote the direct linking of targeting and therapeutic molecules. This study provided proof of enzyme adsorption onto gold nanoparticles and digestion efficacy of AuNPs-adsorbed enzymes. We employed Fusarium oxysporum extract to produce AuNPs. These nanoparticles were round or polygonal with a size of about 5 nm, negative surface charge of about - 33 mV, and maximum absorption peak at 530 nm. After the adsorption of DNAse I, RNase A, or Proteinase K onto the AuNPs surface, the nanoparticles exhibited shifts in surface charge (values between - 22 and - 13 mV) and maximum absorption peak (values between 513 and 534 nm). The ability of AuNP-enzyme complexes to digest different targets was compared to enzymes alone. We found a remarkable degradation of ssDNA, and dsDNA by AuNP-DNAse I, and a modest degradation of ssRNA by AuNP-RNase A. The presence of particular enzymes on the AuNP surface was proved by liquid chromatography-mass spectrometry (LC-MS). Using SDS-PAGE electrophoresis, we detected a remarkable digestion of collagen type I and fibrinogen by AuNP-proteinase K complexes. We concluded that the biologically produced AuNPs directly bound DNase I, RNase A, and proteinase K while preserving their ability to digest specific targets. Therefore, according to our results, AuNPs can be used as effective enzyme carriers and the AuNP-enzyme conjugates can be effective tools for enzymotherapy.

摘要

基于 DNA 酶 I 或 RNA 酶 A 的酶疗法常被提议作为癌症治疗的一种可选策略。这些方法的疗效受到限制,例如酶的半衰期短或内化率低。使用纳米颗粒,如金纳米颗粒 (AuNPs),有助于克服这些限制。具体来说,由于其表面存在天然的封端剂 (CA),生物合成的 AuNPs 是一种很有前途的变体。CA 的组成取决于产生微生物。CA 负责稳定纳米颗粒,并促进靶向和治疗分子的直接连接。本研究证明了酶吸附到金纳米颗粒上以及 AuNP 吸附酶的消化效率。我们使用尖孢镰刀菌提取物来生产 AuNPs。这些纳米颗粒呈圆形或多边形,大小约为 5nm,表面带负电荷约为-33mV,最大吸收峰在 530nm。在 DNA 酶 I、RNA 酶 A 或蛋白酶 K 吸附到 AuNP 表面后,纳米颗粒的表面电荷(-22 至-13mV 之间)和最大吸收峰(513 至 534nm 之间)发生了变化。AuNP-酶复合物消化不同靶标的能力与单独的酶进行了比较。我们发现 AuNP-DNA 酶 I 显著降解 ssDNA 和 dsDNA,AuNP-RNase A 适度降解 ssRNA。通过液相色谱-质谱联用 (LC-MS) 证明了 AuNP 表面存在特定的酶。通过 SDS-PAGE 电泳,我们检测到 AuNP-蛋白酶 K 复合物对胶原蛋白 I 和纤维蛋白原的显著消化。我们得出结论,生物合成的 AuNPs 直接结合 DNA 酶 I、RNA 酶 A 和蛋白酶 K,同时保持其消化特定靶标的能力。因此,根据我们的结果,AuNPs 可用作有效的酶载体,AuNP-酶缀合物可用作酶疗法的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535d/10039949/c97f9ea48c47/41598_2023_31792_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验