Suppr超能文献

采用随机森林多重插补法解决比利时健康访谈调查中自我报告的人体测量指标、高血压和高胆固醇偏倚问题。

Using random-forest multiple imputation to address bias of self-reported anthropometric measures, hypertension and hypercholesterolemia in the Belgian health interview survey.

机构信息

Service Risk and Health Impact Assessment, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium.

Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, BE-9000, Ghent, Belgium.

出版信息

BMC Med Res Methodol. 2023 Mar 25;23(1):69. doi: 10.1186/s12874-023-01892-x.

Abstract

BACKGROUND

In many countries, the prevalence of non-communicable diseases risk factors is commonly assessed through self-reported information from health interview surveys. It has been shown, however, that self-reported instead of objective data lead to an underestimation of the prevalence of obesity, hypertension and hypercholesterolemia. This study aimed to assess the agreement between self-reported and measured height, weight, hypertension and hypercholesterolemia and to identify an adequate approach for valid measurement error correction.

METHODS

Nine thousand four hundred thirty-nine participants of the 2018 Belgian health interview survey (BHIS) older than 18 years, of which 1184 participated in the 2018 Belgian health examination survey (BELHES), were included in the analysis. Regression calibration was compared with multiple imputation by chained equations based on parametric and non-parametric techniques.

RESULTS

This study confirmed the underestimation of risk factor prevalence based on self-reported data. With both regression calibration and multiple imputation, adjusted estimation of these variables in the BHIS allowed to generate national prevalence estimates that were closer to their BELHES clinical counterparts. For overweight, obesity and hypertension, all methods provided smaller standard errors than those obtained with clinical data. However, for hypercholesterolemia, for which the regression model's accuracy was poor, multiple imputation was the only approach which provided smaller standard errors than those based on clinical data.

CONCLUSIONS

The random-forest multiple imputation proves to be the method of choice to correct the bias related to self-reported data in the BHIS. This method is particularly useful to enable improved secondary analysis of self-reported data by using information included in the BELHES. Whenever feasible, combined information from HIS and objective measurements should be used in risk factor monitoring.

摘要

背景

在许多国家,通过健康访谈调查中的自我报告信息来评估非传染性疾病风险因素的流行情况较为常见。然而,研究表明,自我报告数据而非客观数据会导致肥胖、高血压和高胆固醇血症的流行率被低估。本研究旨在评估自我报告和测量的身高、体重、高血压和高胆固醇血症之间的一致性,并确定有效的测量误差校正方法。

方法

本研究共纳入了 9439 名年龄大于 18 岁的 2018 年比利时健康访谈调查(BHIS)参与者,其中 1184 名参与者同时参与了 2018 年比利时健康检查调查(BELHES)。本研究比较了回归校准和基于参数和非参数技术的链式方程多重插补。

结果

本研究证实了基于自我报告数据的风险因素流行率被低估。通过回归校准和多重插补,调整 BHIS 中这些变量的估计值,可以生成与 BELHES 临床数据更接近的全国流行率估计值。对于超重、肥胖和高血压,所有方法的标准误差都小于临床数据。然而,对于胆固醇,回归模型的准确性较差,多重插补是唯一一种提供的标准误差小于基于临床数据的方法。

结论

随机森林多重插补被证明是校正 BHIS 中自我报告数据偏差的首选方法。这种方法对于利用 BELHES 中包含的信息来改进自我报告数据的二次分析特别有用。只要可行,应在风险因素监测中同时使用 HIS 和客观测量的综合信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c452/10040120/3c75193c9262/12874_2023_1892_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验