Suppr超能文献

负载于石墨烯上的蛋黄壳型多孔FeO@C用作锂离子半电池/全电池的阳极,具备高倍率性能和长循环寿命。

Yolk-shell porous FeO@C anchored on graphene as anode for Li-ion half/full batteries with high rate capability and long cycle life.

作者信息

Gao Xinjin, Xiao Zhenpeng, Jiang Lili, Wang Chao, Lin Xinru, Sheng Lizhi

机构信息

Jilin Provincial Key Laboratory of Wooden Materials Science and Engineering, Beihua University, Jilin 132013, China.

Key Laboratory for Special Functional Materials in Jilin Provincial Universities, Jilin Institute of Chemical Technology, Jilin 132022, China.

出版信息

J Colloid Interface Sci. 2023 Jul;641:820-830. doi: 10.1016/j.jcis.2023.03.121. Epub 2023 Mar 21.

Abstract

Iron oxides have been widely studied as anode materials for lithium-ion batteries (LIBs) due to their high conductivity (5 × 10 S m) and high capacity (ca. 926 mAh g). However, having a large volume change and being highly prone to dissolution/aggregation during charge/discharge cycles hinder their practical application. Herein, we report a design strategy for constructing yolk-shell porous FeO@C anchored on graphene nanosheets (Y-S-P-FeO/GNs@C). This particular structure can not only introduce sufficient internal void space to accommodate the volume change of FeO but also afford a carbon shell to restrict FeO overexpansion, thus greatly improving capacity retention. In addition, the pores in FeO can effectively promote ion transport, and the carbon shell anchored on graphene nanosheets is capable of enhancing overall conductivity. Consequently, Y-S-P-FeO/GNs@C features a high reversible capacity of 1143 mAh g, an excellent rate capacity (358 mAh g at 10.0 A g), and a prolonged cycle life with robust cycling stability (579 mAh g remaining after 1800 cycles at 2.0 A g) when assembled into LIBs. The assembled Y-S-P-FeO/GNs@C//LiFePO full-cell delivers a high energy density of 341.0 Wh kg at 37.9 W kg. The Y-S-P-FeO/GNs@C is proved to be an efficient FeO-based anode material for LIBs.

摘要

由于具有高电导率(5×10 S m)和高容量(约926 mAh g),氧化铁作为锂离子电池(LIBs)的负极材料已得到广泛研究。然而,在充放电循环过程中存在较大的体积变化且极易溶解/聚集,这阻碍了它们的实际应用。在此,我们报道了一种构建锚定在石墨烯纳米片上的蛋黄壳多孔FeO@C(Y-S-P-FeO/GNs@C)的设计策略。这种特殊结构不仅可以引入足够的内部空隙空间来适应FeO的体积变化,还能提供一个碳壳来限制FeO的过度膨胀,从而大大提高容量保持率。此外,FeO中的孔隙可以有效地促进离子传输,而锚定在石墨烯纳米片上的碳壳能够提高整体电导率。因此,当组装成LIBs时,Y-S-P-FeO/GNs@C具有1143 mAh g的高可逆容量、优异的倍率性能(在10.0 A g下为358 mAh g)以及具有稳健循环稳定性的长循环寿命(在2.0 A g下循环1800次后仍剩余579 mAh g)。组装的Y-S-P-FeO/GNs@C//LiFePO全电池在37.9 W kg时提供341.0 Wh kg的高能量密度。Y-S-P-FeO/GNs@C被证明是一种用于LIBs的高效的基于FeO的负极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验