INSERM, CIC 1402, Equipe IS-Alive, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France; CHU de Poitiers, Service d'Explorations Fonctionnelles, Physiologie Respiratoire et de l'Exercice, Poitiers, France.
INSERM, CIC 1402, Equipe IS-Alive, Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France.
Neurophysiol Clin. 2023 Feb;53(1):102856. doi: 10.1016/j.neucli.2023.102856. Epub 2023 Mar 24.
Due to the noisy environment, a very large number of patients admitted to intensive care units (ICUs) suffer from sleep severe disruption. These sleep alterations have been associated with a prolonged need for assisted ventilation or even with death. Sleep scoring in the critically ill is very challenging and requires sleep experts, limiting relevant studies to a few experienced teams. In this context, an automated scoring system would be of interest for researchers. In addition, real-time scoring could be used by nurses to protect patients' sleep. We devised a sleep scoring algorithm working in real time and compared this automated scoring against visual scoring.
We analyzed retrospectively 45 polysomnographies previously recorded in non-sedated and conscious ICU patients during their weaning phase. For each patient, one EEG channel was processed, providing automated sleep scoring. We compared total sleep time obtained with visual scoring versus automated scoring. The proportion of sleep episodes correctly identified was calculated.
Automated total sleep time and visual sleep time were correlated; the automatic system overestimated total sleep time. The median [25th-75th] percentage of sleep episodes lasting more than 10 min detected by algorithm was 100% [73.2 - 100.0]. Median sensitivity was 97.9% [92.5 - 99.9].
An automated sleep scoring system can identify nearly all long sleep episodes. Since these episodes are restorative, this real-time automated system opens the way for EEG-guided sleep protection strategies. Nurses could cluster their non-urgent care procedures, and reduce ambient noise so as to minimize patients' sleep disruptions.
由于 ICU 环境嘈杂,大量患者严重睡眠中断。这些睡眠紊乱与辅助通气时间延长甚至死亡有关。危重病患者的睡眠评分极具挑战性,需要睡眠专家参与,这限制了相关研究只能在少数有经验的团队中开展。在此背景下,自动评分系统对研究人员很有意义。此外,护士可以实时使用评分来保护患者的睡眠。我们设计了一种实时工作的睡眠评分算法,并将这种自动评分与视觉评分进行了比较。
我们回顾性分析了 45 例先前在 ICU 清醒镇静患者脱机期间记录的多导睡眠图。对每位患者的一个 EEG 通道进行处理,提供自动睡眠评分。我们比较了视觉评分与自动评分的总睡眠时间。计算了正确识别的睡眠期比例。
自动总睡眠时间与视觉睡眠时间相关;自动系统高估了总睡眠时间。算法检测到的持续时间超过 10 分钟的睡眠期的中位数[25 分位数-75 分位数]比例为 100%[73.2-100.0]。中位数灵敏度为 97.9%[92.5-99.9]。
自动睡眠评分系统几乎可以识别所有长睡眠期。由于这些期是恢复性的,这种实时自动系统为 EEG 引导的睡眠保护策略开辟了道路。护士可以集中处理非紧急护理程序,并减少环境噪音,以尽量减少患者的睡眠中断。