Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA.
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
J Clin Monit Comput. 2023 Oct;37(5):1369-1377. doi: 10.1007/s10877-023-00986-7. Epub 2023 Mar 27.
Repeated administration of high doses of propofol to patients with treatment-resistant depression (TRD) has been shown to produce antidepressant effects in small clinical trials. These effects can be elicited when the patient's EEG burst-suppression ratio (BSR) is maintained at 70-90% for 15 min in repeated treatments. This deep anesthesia domain lies beyond the range of current propofol pharmacokinetic/pharmacodynamic (PK/PD) models. In this study, we adapt the Eleveld model for use at deep anesthesia levels with a BSR endpoint, with the goal of aiding the estimation of the dosage of propofol needed to achieve 70-90% BSR for 15 min. We test the ability of the adapted model to predict BSR for these treatments. Twenty participants underwent 6-9 treatments of high doses of propofol (5-9 of which were included in this analysis) for a total of 115 treatments. To adapt the Eleveld model for this endpoint, we optimized the model parameters Ke0, γ and C50. These parameters were then used in the adapted model to estimate second-by-second BSR for each treatment. Estimated BSR was compared with observed BSR for each treatment of each participant. Median absolute performance error (MdAPE) between the estimated and observed BSR (25th-75th percentile) was 6.63 (3.79-12.96) % points and 8.51 (4.32-16.74) % between the estimated and observed treatment duration. This predictive performance is statistically significantly better at predicting BSR compared with the standard Eleveld model at deep anesthesia levels. Our adapted Eleveld model provides a useful tool to aid dosing propofol for high-dose anesthetic treatments for depression.
反复给予治疗抵抗性抑郁症(TRD)患者大剂量异丙酚已在小型临床试验中显示出抗抑郁作用。当患者的脑电图爆发抑制比(BSR)在重复治疗中维持在 70-90%达 15 分钟时,可以引出这些作用。这种深度麻醉域超出了当前异丙酚药代动力学/药效学(PK/PD)模型的范围。在这项研究中,我们将 Eleveld 模型改编为使用 BSR 终点的深度麻醉水平,旨在帮助估计达到 70-90%BSR 所需的异丙酚剂量15 分钟。我们测试了改编后的模型预测这些治疗的 BSR 的能力。20 名参与者接受了 6-9 次高剂量异丙酚治疗(其中 5-9 次包含在此分析中),共进行了 115 次治疗。为了将 Eleveld 模型改编为此终点,我们优化了模型参数 Ke0、γ 和 C50。然后,在改编后的模型中使用这些参数来估计每个治疗的每秒钟 BSR。每个参与者每个治疗的估计 BSR 与观察到的 BSR 进行比较。估计 BSR 与观察 BSR 之间的中位数绝对性能误差(MdAPE)(25 至 75 百分位数)为 6.63(3.79-12.96)%,而估计治疗时间与观察治疗时间之间的中位数绝对性能误差为 8.51(4.32-16.74)%。与深度麻醉水平的标准 Eleveld 模型相比,这种预测性能在预测 BSR 方面具有统计学意义上的显著改善。我们改编的 Eleveld 模型为辅助为治疗抑郁症的高剂量麻醉治疗进行异丙酚给药提供了有用的工具。