Suppr超能文献

基于深度学习的药物-靶标相互作用预测模型,纳入蛋白质结合位点信息。

Deep Learning-Based Modeling of Drug-Target Interaction Prediction Incorporating Binding Site Information of Proteins.

机构信息

Department of Computer Science and Engineering, Manipal Academy of Higher Education, Manipal, India.

Department of Computer Science and Engineering, Manipal Academy of Higher Education, Bengaluru, India.

出版信息

Interdiscip Sci. 2023 Jun;15(2):306-315. doi: 10.1007/s12539-023-00557-z. Epub 2023 Mar 26.

Abstract

Chemogenomics, also known as proteochemometrics, covers various computational methods for predicting interactions between related drugs and targets on large-scale data. Chemogenomics is used in the early stages of drug discovery to predict the off-target effects of proteins against therapeutic candidates. This study aims to predict unknown ligand-target interactions using one-dimensional SMILES as inputs for ligands and binding site residues for proteins in a computationally efficient manner. We first formulate a Deep learning CNN model using one-dimensional SMILES for drugs and motif-rich binding pocket subsequences of proteins as inputs. We evaluate and compare the proposed deep learning model trained on expert-based features against shallow feature-based machine learning methods. The proposed method achieved better or similar performance on the MSE and AUPR metrics than the shallow methods. Additionally, We show that our deep learning model, DeepPS is computationally more efficient than the deep learning model trained on full-length raw sequences of proteins. We conclude that a beneficial research approach would be to integrate structural information of proteins for modeling drug-target interaction prediction of large datasets for more interpretability, high throughput, and broad applicability.

摘要

化学生物组学,也称为蛋白质化学计量学,涵盖了各种用于预测大规模数据中相关药物和靶标之间相互作用的计算方法。化学生物组学用于药物发现的早期阶段,以预测蛋白质对治疗候选物的脱靶效应。本研究旨在使用一维 SMILES 作为输入,预测未知配体-靶标相互作用,同时考虑蛋白质的结合位点残基。我们首先使用一维 SMILES 为药物和富含基序的蛋白质结合口袋子序列构建深度学习 CNN 模型作为输入。我们评估并比较了基于专家特征训练的深度学习模型与基于浅层特征的机器学习方法。与浅层方法相比,所提出的方法在均方误差 (MSE) 和平均精度 (AUPR) 指标上的性能更好或相似。此外,我们表明,我们的深度学习模型 DeepPS 在计算效率上优于基于蛋白质全长原始序列训练的深度学习模型。我们得出的结论是,一种有益的研究方法是整合蛋白质的结构信息,用于对大型数据集进行药物-靶标相互作用预测建模,以提高可解释性、高通量和广泛适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fda6/10148762/bb7a261b16f6/12539_2023_557_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验