Suppr超能文献

AttentionDTA:基于序列的深度学习与注意力机制预测药物-靶点结合亲和力

AttentionDTA: Drug-Target Binding Affinity Prediction by Sequence-Based Deep Learning With Attention Mechanism.

作者信息

Zhao Qichang, Duan Guihua, Yang Mengyun, Cheng Zhongjian, Li Yaohang, Wang Jianxin

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):852-863. doi: 10.1109/TCBB.2022.3170365. Epub 2023 Apr 3.

Abstract

The identification of drug-target relations (DTRs) is substantial in drug development. A large number of methods treat DTRs as drug-target interactions (DTIs), a binary classification problem. The main drawback of these methods are the lack of reliable negative samples and the absence of many important aspects of DTR, including their dose dependence and quantitative affinities. With increasing number of publications of drug-protein binding affinity data recently, DTRs prediction can be viewed as a regression problem of drug-target affinities (DTAs) which reflects how tightly the drug binds to the target and can present more detailed and specific information than DTIs. The growth of affinity data enables the use of deep learning architectures, which have been shown to be among the state-of-the-art methods in binding affinity prediction. Although relatively effective, due to the black-box nature of deep learning, these models are less biologically interpretable. In this study, we proposed a deep learning-based model, named AttentionDTA, which uses attention mechanism to predict DTAs. Different from the models using 3D structures of drug-target complexes or graph representation of drugs and proteins, the novelty of our work is to use attention mechanism to focus on key subsequences which are important in drug and protein sequences when predicting its affinity. We use two separate one-dimensional Convolution Neural Networks (1D-CNNs) to extract the semantic information of drug's SMILES string and protein's amino acid sequence. Furthermore, a two-side multi-head attention mechanism is developed and embedded to our model to explore the relationship between drug features and protein features. We evaluate our model on three established DTA benchmark datasets, Davis, Metz, and KIBA. AttentionDTA outperforms the state-of-the-art deep learning methods under different evaluation metrics. The results show that the attention-based model can effectively extract protein features related to drug information and drug features related to protein information to better predict drug target affinities. It is worth mentioning that we test our model on IC50 dataset, which provides the binding sites between drugs and proteins, to evaluate the ability of our model to locate binding sites. Finally, we visualize the attention weight to demonstrate the biological significance of the model. The source code of AttentionDTA can be downloaded from https://github.com/zhaoqichang/AttentionDTA_TCBB.

摘要

药物-靶点关系(DTRs)的识别在药物研发中至关重要。大量方法将DTRs视为药物-靶点相互作用(DTIs),这是一个二分类问题。这些方法的主要缺点是缺乏可靠的阴性样本,并且忽略了DTR的许多重要方面,包括它们的剂量依赖性和定量亲和力。随着最近药物-蛋白质结合亲和力数据出版物数量的增加,DTRs预测可被视为药物-靶点亲和力(DTAs)的回归问题,该问题反映了药物与靶点结合的紧密程度,并且比DTIs能提供更详细和具体的信息。亲和力数据的增长使得深度学习架构得以应用,这些架构已被证明是结合亲和力预测中的最先进方法之一。尽管相对有效,但由于深度学习的黑箱性质,这些模型的生物学可解释性较差。在本研究中,我们提出了一种基于深度学习的模型,名为AttentionDTA,它使用注意力机制来预测DTAs。与使用药物-靶点复合物的3D结构或药物和蛋白质的图形表示的模型不同,我们工作的新颖之处在于在预测亲和力时使用注意力机制来关注药物和蛋白质序列中重要的关键子序列。我们使用两个单独的一维卷积神经网络(1D-CNNs)来提取药物的SMILES字符串和蛋白质的氨基酸序列的语义信息。此外,我们开发了一种双侧多头注意力机制并将其嵌入到我们的模型中,以探索药物特征与蛋白质特征之间的关系。我们在三个已建立的DTA基准数据集Davis、Metz和KIBA上评估我们的模型。AttentionDTA在不同评估指标下优于最先进的深度学习方法。结果表明,基于注意力的模型可以有效地提取与药物信息相关的蛋白质特征和与蛋白质信息相关的药物特征,以更好地预测药物靶点亲和力。值得一提的是,我们在IC50数据集上测试了我们的模型,该数据集提供了药物与蛋白质之间的结合位点,以评估我们的模型定位结合位点的能力。最后,我们可视化注意力权重以证明模型的生物学意义。AttentionDTA的源代码可从https://github.com/zhaoqichang/AttentionDTA_TCBB下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验