Suppr超能文献

神经计算明度模型解释了在格尔布照明下观察到的真实表面的外观。

Neurocomputational Lightness Model Explains the Appearance of Real Surfaces Viewed Under Gelb Illumination.

作者信息

Rudd Michael E

机构信息

Department of Psychology and Center for Integrative Neuroscience, University of Nevada, Reno, NV 89557-0296.

出版信息

J Percept Imaging. 2020 Jan-Jun;3(1):105021-1050216. doi: 10.2352/j.percept.imaging.2020.3.1.010502.

Abstract

One of the primary functions of visual perception is to represent, estimate, and evaluate the properties of material surfaces in the visual environment. One such property is surface color, which can convey important information about ecologically relevant object characteristics such as the ripeness of fruit and the emotional reactions of humans in social interactions. This paper further develops and applies a neural model (Rudd, 2013, 2017) of how the human visual system represents the light/dark dimension of color-known as lightness-and computes the colors of achromatic material surfaces in real-world spatial contexts. Quantitative lightness judgments conducted with real surfaces viewed under Gelb (i.e., spotlight) illumination are analyzed and simulated using the model. According to the model, luminance ratios form the inputs to ON- and OFF-cells, which encode local luminance increments and decrements, respectively. The response properties of these cells are here characterized by physiologically motivated equations in which different parameters are assumed for the two cell types. Under non-saturating conditions, ON-cells respond in proportion to a compressive power law of the local incremental luminance in the image that causes them to respond, while OFF-cells respond linearly to local decremental luminance. ON- and OFF-cell responses to edges are log-transformed at a later stage of neural processing and then integrated across space to compute lightness via an edge integration process that can be viewed as a neurally elaborated version of Land's retinex model (Land & McCann, 1971). It follows from the model assumptions that the perceptual weights-interpreted as neural gain factors-that the model observer applies to steps in log luminance at edges in the edge integration process are determined by the product of a polarity-dependent factor 1-by which incremental steps in log luminance (i.e., edges) are weighted by the value <1.0 and decremental steps are weighted by 1.0-and a distance-dependent factor 2, whose edge weightings are estimated to fit perceptual data. The model accounts quantitatively (to within experimental error) for the following: lightness constancy failures observed when the illumination level on a simultaneous contrast display is changed (Zavagno, Daneyko, & Liu, 2018); the degree of dynamic range compression in the staircase-Gelb paradigm (Cataliotti & Gilchrist, 1995; Zavagno, Annan, & Caputo, 2004); partial releases from compression that occur when the staircase-Gelb papers are reordered (Zavagno, Annan, & Caputo, 2004); and the larger compression release that occurs when the display is surrounded by a white border (Gilchrist & Cataliotti, 1994).

摘要

视觉感知的主要功能之一是表征、估计和评估视觉环境中物质表面的属性。其中一个属性就是表面颜色,它可以传达有关生态相关物体特征的重要信息,比如水果的成熟度以及社交互动中人类的情绪反应。本文进一步发展并应用了一个神经模型(Rudd,2013年,2017年),该模型阐述了人类视觉系统如何表征颜色的明/暗维度(即明度),并在现实世界的空间背景中计算消色差物质表面的颜色。使用该模型对在格尔布(即聚光灯)照明下观察真实表面时进行的定量明度判断进行了分析和模拟。根据该模型,亮度比率构成了ON细胞和OFF细胞的输入,它们分别编码局部亮度的增加和减少。这些细胞的反应特性在此由具有生理学动机的方程来表征,其中为两种细胞类型假设了不同的参数。在非饱和条件下,ON细胞的反应与导致它们反应的图像中局部增量亮度的压缩幂律成比例,而OFF细胞对局部递减亮度呈线性反应。ON细胞和OFF细胞对边缘的反应在神经处理的后期进行对数变换,然后通过边缘整合过程在空间上进行整合以计算明度,该过程可被视为兰德视网膜皮层模型(Land & McCann,1971年)的神经细化版本。从模型假设可以得出,在边缘整合过程中模型观察者应用于边缘处对数亮度步长的感知权重(被解释为神经增益因子)由一个极性相关因子1(对数亮度的增量步长,即边缘,由值<1.0加权,递减步长由1.0加权)和一个距离相关因子2的乘积决定,其边缘权重经估计以拟合感知数据。该模型在以下方面进行了定量解释(在实验误差范围内):当同时对比显示的照明水平改变时观察到的明度恒常性失败(Zavagno、Daneyko和Liu,2018年);阶梯 - 格尔布范式中的动态范围压缩程度(Cataliotti和Gilchrist,1995年;Zavagno、Annan和Caputo,2004年);当阶梯格尔布纸张重新排序时发生的部分压缩释放(Zavagno、Annan和Caputo,2004年);以及当显示器被白色边框包围时发生较大的压缩释放(Gilchrist和Cataliotti,1994年)。

相似文献

4
Lightness constancy and illumination discounting.明度恒常性与光照折扣
Atten Percept Psychophys. 2011 Aug;73(6):1886-902. doi: 10.3758/s13414-011-0154-2.
5
Lightness constancy: ratio invariance and luminance profile.明度恒常性:比率不变性与亮度分布
Atten Percept Psychophys. 2009 Apr;71(3):463-70. doi: 10.3758/APP.71.3.463.
6
Lightness compression and hue changes.亮度压缩和色调变化。
Span J Psychol. 2006 Nov;9(2):300-11. doi: 10.1017/s113874160000620x.
8
Lightness, brightness, and anchoring.明度、亮度与锚定
J Vis. 2014 Aug 7;14(9):7. doi: 10.1167/14.9.7.

引用本文的文献

2
Fixational eye movements and edge integration in lightness perception.注视性眼动与明度感知中的边缘整合
Vision Res. 2025 Feb;227:108517. doi: 10.1016/j.visres.2024.108517. Epub 2025 Jan 6.
3
A model of colour appearance based on efficient coding of natural images.基于自然图像有效编码的颜色外观模型。
PLoS Comput Biol. 2023 Jun 15;19(6):e1011117. doi: 10.1371/journal.pcbi.1011117. eCollection 2023 Jun.

本文引用的文献

2
4
The phantom illusion.幻肢幻觉
Vision Res. 2015 Dec;117:49-58. doi: 10.1016/j.visres.2015.10.007. Epub 2015 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验