Mei Baicheng, Lin Tsai-Wei, Sheridan Grant S, Evans Christopher M, Sing Charles E, Schweizer Kenneth S
Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States.
Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States.
ACS Cent Sci. 2023 Feb 24;9(3):508-518. doi: 10.1021/acscentsci.2c01373. eCollection 2023 Mar 22.
The diffusion of molecules ("penetrants") of variable size, shape, and chemistry through dense cross-linked polymer networks is a fundamental scientific problem broadly relevant in materials, polymer, physical, and biological chemistry. Relevant applications include separation membranes, barrier materials, drug delivery, and nanofiltration. A major open question is the relationship between transport, thermodynamic state, and penetrant and polymer chemical structure. Here we combine experiment, simulation, and theory to unravel these competing effects on penetrant transport in rubbery and supercooled polymer permanent networks over a wide range of cross-link densities, size ratios, and temperatures. The crucial importance of the coupling of local penetrant hopping to polymer structural relaxation and the secondary importance of mesh confinement effects are established. Network cross-links strongly slow down nm-scale polymer relaxation, which greatly retards the activated penetrant diffusion. The demonstrated good agreement between experiment, simulation, and theory provides strong support for the size ratio (penetrant diameter to the polymer Kuhn length) as a key variable and the usefulness of coarse-grained simulation and theoretical models that average over Angstrom scale structure. The developed theory provides an understanding of the physical processes underlying the behaviors observed in experiment and simulation and suggests new strategies for enhancing selective polymer membrane design.
大小、形状和化学性质各异的分子(“渗透剂”)在致密交联聚合物网络中的扩散是一个在材料、聚合物、物理和生物化学领域广泛相关的基础科学问题。相关应用包括分离膜、阻隔材料、药物递送和纳滤。一个主要的开放性问题是传输、热力学状态以及渗透剂和聚合物化学结构之间的关系。在此,我们结合实验、模拟和理论,以揭示在广泛的交联密度、尺寸比和温度范围内,这些对橡胶态和过冷聚合物永久网络中渗透剂传输的竞争效应。确定了局部渗透剂跳跃与聚合物结构弛豫耦合的关键重要性以及网格限制效应的次要重要性。网络交联极大地减缓了纳米尺度的聚合物弛豫,这极大地阻碍了活化的渗透剂扩散。实验、模拟和理论之间所展示的良好一致性为尺寸比(渗透剂直径与聚合物库恩长度之比)作为关键变量以及对埃尺度结构进行平均的粗粒化模拟和理论模型的有用性提供了有力支持。所发展的理论有助于理解实验和模拟中观察到的行为背后的物理过程,并为改进选择性聚合物膜设计提出了新策略。