Suppr超能文献

基于库尔贝克-莱布勒散度相似性方法构建晚期非小细胞肺癌患者个体化脑代谢网络:一项基于18F-氟脱氧葡萄糖正电子发射断层扫描的研究

Construction of an individualized brain metabolic network in patients with advanced non-small cell lung cancer by the Kullback-Leibler divergence-based similarity method: A study based on 18F-fluorodeoxyglucose positron emission tomography.

作者信息

Yu Jie, Hua Lin, Cao Xiaoling, Chen Qingling, Zeng Xinglin, Yuan Zhen, Wang Ying

机构信息

Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China.

Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China.

出版信息

Front Oncol. 2023 Mar 10;13:1098748. doi: 10.3389/fonc.2023.1098748. eCollection 2023.

Abstract

BACKGROUND

Lung cancer has one of the highest mortality rates of all cancers, and non-small cell lung cancer (NSCLC) accounts for the vast majority (about 85%) of lung cancers. Psychological and cognitive abnormalities are common in cancer patients, and cancer information can affect brain function and structure through various pathways. To observe abnormal brain function in NSCLC patients, the main purpose of this study was to construct an individualized metabolic brain network of patients with advanced NSCLC using the Kullback-Leibler divergence-based similarity (KLS) method.

METHODS

This study included 78 patients with pathologically proven advanced NSCLC and 60 healthy individuals, brain F-FDG PET images of these individuals were collected and all patients with advanced NSCLC were followed up (>1 year) to confirm their overall survival. FDG-PET images were subjected to individual KLS metabolic network construction and Graph theoretical analysis. According to the analysis results, a predictive model was constructed by machine learning to predict the overall survival of NSLCL patients, and the correlation with the real survival was calculated.

RESULTS

Significant differences in the degree and betweenness distributions of brain network nodes between the NSCLC and control groups (<0.05) were found. Compared to the normal group, patients with advanced NSCLC showed abnormal brain network connections and nodes in the temporal lobe, frontal lobe, and limbic system. The prediction model constructed using the abnormal brain network as a feature predicted the overall survival time and the actual survival time fitting with statistical significance (r=0.42, =0.012).

CONCLUSIONS

An individualized brain metabolic network of patients with NSCLC was constructed using the KLS method, thereby providing more clinical information to guide further clinical treatment.

摘要

背景

肺癌是所有癌症中死亡率最高的癌症之一,非小细胞肺癌(NSCLC)占肺癌的绝大多数(约85%)。心理和认知异常在癌症患者中很常见,癌症信息可通过多种途径影响脑功能和结构。为观察NSCLC患者的脑功能异常,本研究的主要目的是使用基于库尔贝克-莱布勒散度的相似性(KLS)方法构建晚期NSCLC患者的个体化代谢脑网络。

方法

本研究纳入78例经病理证实的晚期NSCLC患者和60名健康个体,收集这些个体的脑部F-FDG PET图像,并对所有晚期NSCLC患者进行随访(>1年)以确认其总生存期。对FDG-PET图像进行个体KLS代谢网络构建和图论分析。根据分析结果,通过机器学习构建预测模型以预测NSLCL患者的总生存期,并计算与实际生存期的相关性。

结果

发现NSCLC组与对照组之间脑网络节点的度和介数分布存在显著差异(<0.05)。与正常组相比,晚期NSCLC患者在颞叶、额叶和边缘系统表现出异常的脑网络连接和节点。以异常脑网络为特征构建的预测模型预测的总生存时间与实际生存时间拟合具有统计学意义(r=0.42,P=0.012)。

结论

使用KLS方法构建了NSCLC患者的个体化脑代谢网络,从而为指导进一步的临床治疗提供了更多临床信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7738/10036828/d69f2e3dec45/fonc-13-1098748-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验