Suppr超能文献

基于库尔贝克-莱布勒散度相似性估计的个体脑代谢连接组指标可预测从轻度认知障碍到阿尔茨海默病痴呆的进展。

Individual brain metabolic connectome indicator based on Kullback-Leibler Divergence Similarity Estimation predicts progression from mild cognitive impairment to Alzheimer's dementia.

作者信息

Wang Min, Jiang Jiehui, Yan Zhuangzhi, Alberts Ian, Ge Jingjie, Zhang Huiwei, Zuo Chuantao, Yu Jintai, Rominger Axel, Shi Kuangyu

机构信息

Shanghai Institute for Advanced Communication and Data Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.

Key laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai, China.

出版信息

Eur J Nucl Med Mol Imaging. 2020 Nov;47(12):2753-2764. doi: 10.1007/s00259-020-04814-x. Epub 2020 Apr 22.

Abstract

PURPOSE

Positron emission tomography (PET) with F-fluorodeoxyglucose (FDG) reveals altered cerebral metabolism in individuals with mild cognitive impairment (MCI) and Alzheimer's dementia (AD). Previous metabolic connectome analyses derive from groups of patients but do not support the prediction of an individual's risk of conversion from present MCI to AD. We now present an individual metabolic connectome method, namely the Kullback-Leibler Divergence Similarity Estimation (KLSE), to characterize brain-wide metabolic networks that predict an individual's risk of conversion from MCI to AD.

METHODS

FDG-PET data consisting of 50 healthy controls, 332 patients with stable MCI, 178 MCI patients progressing to AD, and 50 AD patients were recruited from ADNI database. Each individual's metabolic brain network was ascertained using the KLSE method. We compared intra- and intergroup similarity and difference between the KLSE matrix and group-level matrix, and then evaluated the network stability and inter-individual variation of KLSE. The multivariate Cox proportional hazards model and Harrell's concordance index (C-index) were employed to assess the prediction performance of KLSE and other clinical characteristics.

RESULTS

The KLSE method captures more pathological connectivity in the parietal and temporal lobes relative to the typical group-level method, and yields detailed individual information, while possessing greater stability of network organization (within-group similarity coefficient, 0.789 for sMCI and 0.731 for pMCI). Metabolic connectome expression was a superior predictor of conversion than were other clinical assessments (hazard ratio (HR) = 3.55; 95% CI, 2.77-4.55; P < 0.001). The predictive performance improved further upon combining clinical variables in the Cox model, i.e., C-indices 0.728 (clinical), 0.730 (group-level pattern model), 0.750 (imaging connectome), and 0.794 (the combined model).

CONCLUSION

The KLSE indicator identifies abnormal brain networks predicting an individual's risk of conversion from MCI to AD, thus potentially constituting a clinically applicable imaging biomarker.

摘要

目的

采用氟代脱氧葡萄糖(FDG)的正电子发射断层扫描(PET)显示,轻度认知障碍(MCI)和阿尔茨海默病(AD)患者的大脑代谢发生改变。以往的代谢连接组分析来自患者群体,但不支持预测个体从当前MCI转化为AD的风险。我们现在提出一种个体代谢连接组方法,即库尔贝克-莱布勒散度相似性估计(KLSE),以表征全脑代谢网络,预测个体从MCI转化为AD的风险。

方法

从阿尔茨海默病神经影像学计划(ADNI)数据库招募了由50名健康对照者、332名稳定MCI患者、178名进展为AD的MCI患者和50名AD患者组成的FDG-PET数据。使用KLSE方法确定每个个体的代谢脑网络。我们比较了KLSE矩阵与组水平矩阵之间的组内和组间相似性及差异,然后评估了KLSE的网络稳定性和个体间变异性。采用多变量Cox比例风险模型和哈雷尔一致性指数(C指数)评估KLSE和其他临床特征的预测性能。

结果

相对于典型的组水平方法,KLSE方法在顶叶和颞叶捕获了更多的病理连接,并产生详细的个体信息,同时具有更高的网络组织稳定性(组内相似系数,稳定MCI为0.789,进展性MCI为0.731)。代谢连接组表达比其他临床评估更能预测转化(风险比[HR]=3.55;95%置信区间,2.77-4.55;P<0.001)。在Cox模型中结合临床变量后,预测性能进一步提高,即C指数分别为0.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ef/7567735/76d9619c596c/259_2020_4814_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验