Suppr超能文献

子宫内膜癌女性中Wnt信号与上皮-间质转化标志物与临床特征的关联。

The association of Wnt-signalling and EMT markers with clinical characteristics in women with endometrial cancer.

作者信息

Ledinek Živa, Sobočan Monika, Sisinger Damjan, Hojnik Marko, Büdefeld Tomaž, Potočnik Uroš, Knez Jure

机构信息

Department of Pathology, University Medical Centre Maribor, Maribor, Slovenia.

Divison for Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia.

出版信息

Front Oncol. 2023 Mar 8;13:1013463. doi: 10.3389/fonc.2023.1013463. eCollection 2023.

Abstract

Endometrial cancer is the most common gynecologic malignancy in the developed world. Risk stratification and treatment approaches are changing due to better understanding of tumor biology. Upregulated Wnt signaling plays an important role in cancer initiation and progression with promising potential for development of specific Wnt inhibitor therapy. One of the ways in which Wnt signaling contributes to progression of cancer, is by activating epithelial-to-mesenchymal transition (EMT) in tumor cells, causing the expression of mesenchymal markers, and enabling tumor cells to dissociate and migrate. This study analyzed the expression of Wnt signaling and EMT markers in endometrial cancer. Wnt signaling and EMT markers were significantly correlated with hormone receptors status in EC, but not with other clinico-pathological characteristics. Expression of Wnt antagonist, Dkk1 was significantly different between the ESGO-ESTRO-ESP patient risk assessment categories using integrated molecular risk assessment.

摘要

子宫内膜癌是发达国家最常见的妇科恶性肿瘤。由于对肿瘤生物学有了更好的了解,风险分层和治疗方法正在发生变化。Wnt信号上调在癌症的发生和发展中起重要作用,具有开发特异性Wnt抑制剂疗法的潜在前景。Wnt信号促进癌症进展的一种方式是通过激活肿瘤细胞中的上皮-间质转化(EMT),导致间充质标志物的表达,并使肿瘤细胞能够解离和迁移。本研究分析了子宫内膜癌中Wnt信号和EMT标志物的表达。Wnt信号和EMT标志物与子宫内膜癌中的激素受体状态显著相关,但与其他临床病理特征无关。使用综合分子风险评估,在ESGO-ESTRO-ESP患者风险评估类别之间,Wnt拮抗剂Dkk1的表达存在显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7818/10031053/1216c08701bd/fonc-13-1013463-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验