Dey Sonjoy, Manjunath Krishnappa, Zak Alla, Singh Gurpreet
Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, Kansas 66506, United States.
Faculty of Sciences, Holon Institute of Technology, Holon 5810201, Israel.
ACS Omega. 2023 Mar 8;8(11):10126-10138. doi: 10.1021/acsomega.2c07464. eCollection 2023 Mar 21.
Layered transition metal dichalcogenides (TMDs) such as tungsten disulfide (WS) are promising materials for a wide range of applications, including charge storage in batteries and supercapacitors. Nevertheless, TMD-based electrodes suffer from bottlenecks such as capacity fading at high current densities, voltage hysteresis during the conversion reaction, and polysulfide dissolution. To tame such adverse phenomena, we fabricate composites with WS nanotubes. Herein, we report on the superior electrochemical performance of ceramic composite fibers comprising WS nanotubes (WSNTs) embedded in a chemically robust molecular polymer-derived ceramic matrix of silicon-oxycarbide (SiOC). Such a heterogeneous fiber structure was obtained via electrospinning of WSNT/preceramic polymer solution followed by pyrolysis at elevated temperatures. The electrode capacity fading in WSNTs was curbed by the synergistic effect between WSNT and SiOC. As a result, the composite electrode exhibits high initial capacity of 454 mAh g and the capacity retention approximately 2-3 times higher than that of the neat WSNT electrode.
层状过渡金属二硫属化物(TMDs),如二硫化钨(WS),是用于广泛应用的有前途的材料,包括电池和超级电容器中的电荷存储。然而,基于TMD的电极存在诸如高电流密度下容量衰减、转化反应期间的电压滞后以及多硫化物溶解等瓶颈。为了抑制此类不利现象,我们制备了与WS纳米管的复合材料。在此,我们报道了包含嵌入化学稳定的分子聚合物衍生的碳化硅氧(SiOC)陶瓷基质中的WS纳米管(WSNTs)的陶瓷复合纤维的优异电化学性能。通过对WSNT/陶瓷前驱体聚合物溶液进行静电纺丝,然后在高温下热解,获得了这种异质纤维结构。WSNTs中的电极容量衰减通过WSNT和SiOC之间的协同效应得到抑制。结果,复合电极表现出454 mAh g的高初始容量,并且容量保持率比纯WSNT电极高约2 - 3倍。