Pendashteh Afshin, Mikhalchan Anastasiia, Blanco Varela Tamara, Vilatela Juan J
IMDEA Materials Institute, C/Eric Kandel 2, 28906, Getafe, Madrid, Spain.
AIRBUS Operation, P/John Lennon, S/N, 28906, Getafe, Madrid, Spain.
Discov Nano. 2024 Dec 18;19(1):208. doi: 10.1186/s11671-024-04087-5.
New materials for electrical conductors, energy storage, thermal management, and structural elements are required for increased electrification and non-fossil fuel use in transport. Appropriately assembled as macrostructures, nanomaterials can fill these gaps. Here, we critically review the materials science challenges to bridge the scale between the nanomaterials and the large-area components required for applications. We introduce a helpful classification based on three main macroscopic formats (fillers in a matrix, random sheets or aligned fibres) of high-aspect ratio nanoparticles, and the corresponding range of bulk properties from the commodity polymer to the high-performance fibre range. We review progress over two decades on macroscopic solids of nanomaterials (CNTs, graphene, nanowires, etc.), providing a framework to rationalise the transfer of their molecular-scale properties to the scale of engineering components and discussing strategies that overcome the envelope of current aerospace materials. Macroscopic materials in the form of organised networks of high aspect ratio nanomaterials have higher energy density than regular electrodes, superior mechanical properties to the best carbon fibres, and electrical and thermal conductivity above metals. Discussion on extended electrical properties focuses on nanocarbon-based materials (e.g., doped or metal-hybridised) as power or protective conductors and on conductive nanoinks for integrated conductors. Nanocomposite electrodes are enablers of hybrid/electric propulsion by eliminating electrical transport limitations, stabilising emerging high energy density battery electrodes, through high-power pseudocapacitive nanostructured networks, or downsizing Pt-free catalysts in flying fuel cells. Thermal management required in electrified aircraft calls for nanofluids and loop heat pipes of nanoporous conductors. Semi-industrial interlaminar reinforcement using nanomaterials addresses present structural components. Estimated improvements for mid-range aircraft include > 1 tonne weight reduction, eliminating hundreds of CO tonnes released per year and supporting hybrid/electric propulsion by 2035.
随着交通运输领域电气化程度的提高以及非化石燃料使用量的增加,需要新型的电导体、能量存储、热管理和结构元件材料。纳米材料经过适当组装形成宏观结构后,可以填补这些空白。在此,我们批判性地审视了材料科学面临的挑战,以弥合纳米材料与应用所需的大面积组件之间的尺度差距。我们基于高纵横比纳米颗粒的三种主要宏观形式(基体中的填料、随机片材或排列的纤维)以及从商品聚合物到高性能纤维范围的相应本体性能范围,引入了一种有用的分类方法。我们回顾了二十年来纳米材料宏观固体(碳纳米管、石墨烯、纳米线等)的研究进展,提供了一个框架,以合理化将其分子尺度的性能转化为工程组件尺度的过程,并讨论了克服当前航空航天材料局限的策略。高纵横比纳米材料的有序网络形式的宏观材料具有比常规电极更高的能量密度、优于最佳碳纤维的机械性能以及高于金属的电导率和热导率。关于扩展电性能的讨论集中在作为电力或保护导体的纳米碳基材料(例如,掺杂或金属杂化的)以及用于集成导体的导电纳米油墨上。纳米复合电极通过消除电传输限制、通过高功率赝电容纳米结构网络稳定新兴的高能量密度电池电极或缩小飞行燃料电池中无铂催化剂的尺寸,成为混合/电动推进的推动者。电动飞机所需的热管理需要纳米流体和纳米多孔导体的回路热管。使用纳米材料进行半工业层间增强可解决当前的结构组件问题。预计到2035年,中型飞机的改进措施包括减重超过1吨、每年减少数百吨二氧化碳排放以及支持混合/电动推进。