Suppr超能文献

基于机器学习的高血压患者早期认知障碍风险预测模型:开发与验证研究。

A risk prediction model based on machine learning for early cognitive impairment in hypertension: Development and validation study.

机构信息

Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.

Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.

出版信息

Front Public Health. 2023 Mar 9;11:1143019. doi: 10.3389/fpubh.2023.1143019. eCollection 2023.

Abstract

BACKGROUND

Clinical practice guidelines recommend early identification of cognitive impairment in individuals with hypertension with the help of risk prediction tools based on risk factors.

OBJECTIVE

The aim of this study was to develop a superior machine learning model based on easily collected variables to predict the risk of early cognitive impairment in hypertensive individuals, which could be used to optimize early cognitive impairment risk assessment strategies.

METHODS

For this cross-sectional study, 733 patients with hypertension (aged 30-85, 48.98% male) enrolled in multi-center hospitals in China were divided into a training group (70%) and a validation group (30%). After least absolute shrinkage and selection operator (LASSO) regression analysis with 5-fold cross-validation determined the modeling variables, three machine learning classifiers, logistic regression (LR), XGBoost (XGB), and gaussian naive bayes (GNB), were developed. The area under the ROC curve (AUC), accuracy, sensitivity, specificity, and F1 score were used to evaluate the model performance. Shape Additive explanation (SHAP) analysis was performed to rank feature importance. Further decision curve analysis (DCA) assessed the clinical performance of the established model and visualized it by nomogram.

RESULTS

Hip circumference, age, education levels, and physical activity were considered significant predictors of early cognitive impairment in hypertension. The AUC (0.88), F1 score (0.59), accuracy (0.81), sensitivity (0.84), and specificity (0.80) of the XGB model were superior to LR and GNB classifiers.

CONCLUSION

The XGB model based on hip circumference, age, educational level, and physical activity has superior predictive performance and it shows promise in predicting the risk of cognitive impairment in hypertensive clinical settings.

摘要

背景

临床实践指南建议在风险预测工具的帮助下,通过基于危险因素的方法,早期识别高血压患者的认知障碍。

目的

本研究旨在开发一种基于易于收集变量的机器学习模型,以预测高血压患者早期认知障碍的风险,从而优化早期认知障碍风险评估策略。

方法

本横断面研究共纳入中国多中心医院的 733 例高血压患者(年龄 30-85 岁,48.98%为男性),将其分为训练组(70%)和验证组(30%)。通过 5 折交叉验证的最小绝对收缩和选择算子(LASSO)回归分析确定建模变量后,开发了 3 种机器学习分类器,包括逻辑回归(LR)、极端梯度提升(XGB)和高斯朴素贝叶斯(GNB)。采用受试者工作特征曲线下面积(AUC)、准确性、敏感度、特异度和 F1 评分评估模型性能。通过形状加法解释(SHAP)分析对特征重要性进行排序。进一步的决策曲线分析(DCA)评估了所建立模型的临床性能,并通过列线图可视化。

结果

臀围、年龄、受教育程度和体力活动被认为是高血压患者早期认知障碍的显著预测因子。XGB 模型的 AUC(0.88)、F1 评分(0.59)、准确性(0.81)、敏感度(0.84)和特异度(0.80)均优于 LR 和 GNB 分类器。

结论

基于臀围、年龄、受教育程度和体力活动的 XGB 模型具有优异的预测性能,有望用于预测高血压患者认知障碍的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa4b/10034177/4c06e342be3d/fpubh-11-1143019-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验