The Second Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
J Evid Based Med. 2024 Sep;17(3):535-549. doi: 10.1111/jebm.12632. Epub 2024 Aug 6.
This study aimed to develop and validate an eMCI-CHD tool based on clinical data to predict mild cognitive impairment (MCI) risk in patients with coronary heart disease (CHD).
This cross-sectional study prospectively collected data from 400 patients with coronary heart disease (aged 55-90 years, 62% men) from July 2022 to September 2023 and randomized (7:3 ratio) them into training and validation sets. After determining the modeling variables through least absolute shrinkage and selection operator regression analysis, four ML classifiers were developed: logistic regression, extreme gradient boosting (XGBoost), support vector machine, and random forest. The performance of the models was evaluated using area under the ROC curve, accuracy, sensitivity, specificity, and F1 score. Decision curve analysis was used to assess the clinical performance of the established models. The SHapley Additive exPlanations (SHAP) method was applied to determine the significance of the features, the predictive model was visualized with a nomogram, and an online web-based calculator for predicting CHD-MCI risk scores was developed.
Of 400 CHD patients (average age 70.86 ± 8.74 years), 220 (55%) had MCI. The XGBoost model demonstrated superior performance (AUC: 0.86, accuracy: 78.57%, sensitivity: 0.74, specificity: 0.84, F1: 0.79) and underwent validation. An online tool (https://mr.cscps.com.cn/mci/index.html) with seven predictive variables (APOE gene typing, age, education, TyG index, NT-proBNP, C-reactive protein, and occupation) assessed MCI risk in CHD patients.
This study highlights the potential for predicting MCI risk among CHD patients using an ML model-driven nomogram and risk scoring tool based on clinical data.
本研究旨在基于临床数据开发和验证一种 eMCI-CHD 工具,以预测冠心病(CHD)患者发生轻度认知障碍(MCI)的风险。
本前瞻性横断面研究于 2022 年 7 月至 2023 年 9 月间从 400 例 CHD 患者(年龄 55-90 岁,62%为男性)中收集数据,并将其随机(7:3 比例)分为训练集和验证集。通过最小绝对收缩和选择算子回归分析确定建模变量后,开发了 4 种 ML 分类器:逻辑回归、极端梯度提升(XGBoost)、支持向量机和随机森林。采用 ROC 曲线下面积、准确性、敏感性、特异性和 F1 评分评估模型性能。采用决策曲线分析评估建立模型的临床性能。应用 SHapley Additive exPlanations(SHAP)方法确定特征的重要性,采用列线图可视化预测模型,并开发了用于预测 CHD-MCI 风险评分的在线网络计算器。
在 400 例 CHD 患者中(平均年龄 70.86±8.74 岁),220 例(55%)患有 MCI。XGBoost 模型表现出优异的性能(AUC:0.86,准确性:78.57%,敏感性:0.74,特异性:0.84,F1:0.79),并进行了验证。一个具有 7 个预测变量(APOE 基因分型、年龄、教育程度、TyG 指数、NT-proBNP、C-反应蛋白和职业)的在线工具(https://mr.cscps.com.cn/mci/index.html)可评估 CHD 患者的 MCI 风险。
本研究强调了使用基于 ML 模型驱动的列线图和基于临床数据的风险评分工具预测 CHD 患者 MCI 风险的潜力。