Suppr超能文献

组织特异性细胞外基质促进人肌肉祖细胞在明胶和肝素接枝藻酸盐水凝胶上的成肌分化。

Tissue-specific extracellular matrix promotes myogenic differentiation of human muscle progenitor cells on gelatin and heparin conjugated alginate hydrogels.

机构信息

Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, USA.

Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC, USA.

出版信息

Acta Biomater. 2017 Oct 15;62:222-233. doi: 10.1016/j.actbio.2017.08.022. Epub 2017 Aug 17.

Abstract

UNLABELLED

Myogenic differentiation, cell fusion, and myotube formation of skeletal muscle progenitor cells (SMPCs) have key roles during skeletal muscle development and repair. However, after isolation from living tissue and transition to culture dishes, SMPCs gradually lose their function and stop propagating due to the absence of extracellular matrix (ECM). Despite encouraging results of experiments using ECM components in cell culture for maintenance and propagation of some tissue types, the benefits of this approach on SMPC culture are limited, because the bioactive molecules and proteins instantly release and are degraded during culture. In this study, we developed a novel approach to enhance the proliferation and differentiation of human skeletal muscle progenitor cells (hSMPCs) in vitro with skeletal muscle ECM in combination with a modified alginate hydrogel conjugated with gelatin and heparin (Alg-G-H) as a substrate. This Alg-G-H substrate, together with skeletal muscle ECM, significantly enhanced cell expansion, differentiation, and maturation of hSMPCs compared with individual substrata (i.e. gelatin, Matrigel®, or ECM alone). In Western-blot and immunocytochemical analyses, the Alg-G-H-ECM predominantly enhanced expression of skeletal myogenesis markers (MyoD, Myf5, Myogenin, Desmin and Myosin) and myotube formation in hSMPCs. This study demonstrated that combining Alg-G-H substrates with skeletal muscle ECM modulated homeostasis of cell proliferation, differentiation, and maturation of hSMPCs by releasing signaling molecules and growth factors. This technique could be a cost-effective tool for in vitro skeletal muscle cell differentiation and maturation, with potential applications in tissue regeneration and drug development.

STATEMENT OF SIGNIFICANCE

Alginate based biomaterials are commonly used in tissue engineering and regenerative medicine field, however, the inefficient sequestration of growth factors restricted its utilization. In this study, a novel alginate based substrates was produced covalently modified with gelatin and heparin, in order to capture more effective cytokines and proteins in the culture milieu, keep homeostasis for cell survival and tissue regeneration with growth factor sequestration and long-term release capacities. Combining with skeletal muscle derived ECM, the modified Alginate-Gelatin-Heparin gel could most effectively mimic the tissue specific microenvironment to support skeletal muscle progenitor cells proliferation, differentiation and myotube formation. Additionally, the economical and practical features will make it more promising in high-throughput application for regenerative medicine research.

摘要

未加标签

成肌分化、细胞融合和肌管形成在骨骼肌祖细胞(SMPCs)的骨骼肌发育和修复中起着关键作用。然而,SMPCs 从活体组织中分离出来并转移到培养皿后,由于缺乏细胞外基质(ECM),其功能逐渐丧失,增殖停止。尽管在细胞培养中使用 ECM 成分来维持和增殖某些组织类型的实验取得了令人鼓舞的结果,但这种方法对 SMPC 培养的益处有限,因为生物活性分子和蛋白质在培养过程中会立即释放并降解。在这项研究中,我们开发了一种新方法,通过将骨骼肌 ECM 与经过改良的明胶和肝素结合的藻酸盐水凝胶(Alg-G-H)结合作为基质,来增强体外人骨骼肌祖细胞(hSMPCs)的增殖和分化。与单独的基质(即明胶、Matrigel®或 ECM 单独)相比,这种 Alg-G-H 基质与骨骼肌 ECM 一起,可显著促进 hSMPCs 的细胞扩增、分化和成熟。在 Western blot 和免疫细胞化学分析中,Alg-G-H-ECM 主要增强了 hSMPCs 中骨骼肌成肌发生标志物(MyoD、Myf5、Myogenin、Desmin 和 Myosin)的表达和肌管形成。这项研究表明,Alg-G-H 基质与骨骼肌 ECM 结合可通过释放信号分子和生长因子来调节 hSMPCs 的细胞增殖、分化和成熟的动态平衡。该技术可能是体外骨骼肌细胞分化和成熟的一种具有成本效益的工具,在组织再生和药物开发方面具有潜在应用。

意义声明

藻酸盐基生物材料常用于组织工程和再生医学领域,然而,其生长因子的低效捕获限制了其应用。在这项研究中,我们制备了一种新型的藻酸盐基基质,通过共价修饰明胶和肝素,以在培养环境中捕获更有效的细胞因子和蛋白质,通过生长因子的捕获和长期释放能力保持细胞存活和组织再生的动态平衡。结合来源于骨骼肌的 ECM,经过改良的藻酸盐-明胶-肝素凝胶可以最有效地模拟组织特异性微环境,以支持骨骼肌祖细胞的增殖、分化和肌管形成。此外,其经济实用的特点使其在再生医学研究的高通量应用中更具前景。

相似文献

4
5
In Vivo Assessment of Bone Regeneration in Alginate/Bone ECM Hydrogels with Incorporated Skeletal Stem Cells and Single Growth Factors.
PLoS One. 2015 Dec 16;10(12):e0145080. doi: 10.1371/journal.pone.0145080. eCollection 2015.
6
7
Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds.
Biomaterials. 2004 Jul;25(16):3211-22. doi: 10.1016/j.biomaterials.2003.10.045.
9
Molecular analysis of muscle progenitor cells on extracellular matrix coatings and hydrogels.
Acta Biomater. 2019 Oct 1;97:296-309. doi: 10.1016/j.actbio.2019.08.019. Epub 2019 Aug 12.
10
Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation.
J Tissue Eng Regen Med. 2022 May;16(5):484-495. doi: 10.1002/term.3293. Epub 2022 Mar 4.

引用本文的文献

1
Extracellular matrix in skeletal muscle injury and atrophy: mechanisms and therapeutic implications.
J Orthop Translat. 2025 May 16;52:404-418. doi: 10.1016/j.jot.2025.03.004. eCollection 2025 May.
2
Skeletal Muscle Tissue Engineering: From Tissue Regeneration to Biorobotics.
Cyborg Bionic Syst. 2025 May 15;6:0279. doi: 10.34133/cbsystems.0279. eCollection 2025.
3
Urine-derived stem cells genetically modified with IGF1 improve muscle regeneration.
Am J Clin Exp Urol. 2024 Apr 15;12(2):64-87. doi: 10.62347/QSKH2686. eCollection 2024.
4
Quantification of local matrix deposition during muscle stem cell activation using engineered hydrogels.
bioRxiv. 2024 Jan 23:2024.01.20.576326. doi: 10.1101/2024.01.20.576326.
6
Porous biomaterial scaffolds for skeletal muscle tissue engineering.
Front Bioeng Biotechnol. 2023 Oct 3;11:1245897. doi: 10.3389/fbioe.2023.1245897. eCollection 2023.
7
Biomedical applications of engineered heparin-based materials.
Bioact Mater. 2023 Aug 10;31:87-118. doi: 10.1016/j.bioactmat.2023.08.002. eCollection 2024 Jan.
8
Protease-degradable hydrogels with multifunctional biomimetic peptides for bone tissue engineering.
Front Bioeng Biotechnol. 2023 Jun 1;11:1192436. doi: 10.3389/fbioe.2023.1192436. eCollection 2023.

本文引用的文献

1
Anisotropic Materials for Skeletal-Muscle-Tissue Engineering.
Adv Mater. 2016 Dec;28(48):10588-10612. doi: 10.1002/adma.201600240. Epub 2016 Nov 16.
2
Biomimetic strategies for engineering composite tissues.
Curr Opin Biotechnol. 2016 Aug;40:64-74. doi: 10.1016/j.copbio.2016.03.006. Epub 2016 Mar 22.
3
Organoids as an in vitro model of human development and disease.
Nat Cell Biol. 2016 Mar;18(3):246-54. doi: 10.1038/ncb3312.
4
Multiphoton imaging of myogenic differentiation in gelatin-based hydrogels as tissue engineering scaffolds.
Biomater Res. 2016 Jan 18;20:2. doi: 10.1186/s40824-016-0050-x. eCollection 2016.
6
Alginates in Pharmaceutics and Biomedicine: Is the Future so Bright?
Curr Pharm Des. 2015;21(33):4917-35. doi: 10.2174/1381612821666150820105639.
7
A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs.
Acta Biomater. 2015 Oct;25:24-34. doi: 10.1016/j.actbio.2015.07.030. Epub 2015 Jul 22.
8
Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends.
Biomaterials. 2015;53:502-21. doi: 10.1016/j.biomaterials.2015.02.110. Epub 2015 Mar 21.
9
Bioactive IGF-1 release from collagen-GAG scaffold to enhance cartilage repair in vitro.
J Mater Sci Mater Med. 2015 Jan;26(1):5325. doi: 10.1007/s10856-014-5325-y. Epub 2015 Jan 11.
10
Organogenesis in a dish: modeling development and disease using organoid technologies.
Science. 2014 Jul 18;345(6194):1247125. doi: 10.1126/science.1247125. Epub 2014 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验