文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于新型上下文变异聚合方法,利用胚系全外显子组测序数据预测癌症风险。

Predicting Cancer Risk from Germline Whole-exome Sequencing Data Using a Novel Context-based Variant Aggregation Approach.

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.

出版信息

Cancer Res Commun. 2023 Mar 22;3(3):483-488. doi: 10.1158/2767-9764.CRC-22-0355. eCollection 2023 Mar.


DOI:10.1158/2767-9764.CRC-22-0355
PMID:36969913
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10032232/
Abstract

UNLABELLED: Many studies have shown that the distributions of the genomic, nucleotide, and epigenetic contexts of somatic variants in tumors are informative of cancer etiology. Recently, a new direction of research has focused on extracting signals from the contexts of germline variants and evidence has emerged that patterns defined by these factors are associated with oncogenic pathways, histologic subtypes, and prognosis. It remains an open question whether aggregating germline variants using meta-features capturing their genomic, nucleotide, and epigenetic contexts can improve cancer risk prediction. This aggregation approach can potentially increase statistical power for detecting signals from rare variants, which have been hypothesized to be a major source of the missing heritability of cancer. Using germline whole-exome sequencing data from the UK Biobank, we developed risk models for 10 cancer types using known risk variants (cancer-associated SNPs and pathogenic variants in known cancer predisposition genes) as well as models that additionally include the meta-features. The meta-features did not improve the prediction accuracy of models based on known risk variants. It is possible that expanding the approach to whole-genome sequencing can lead to gains in prediction accuracy. SIGNIFICANCE: There is evidence that cancer is partly caused by rare genetic variants that have not yet been identified. We investigate this issue using novel statistical methods and data from the UK Biobank.

摘要

未加标签:许多研究表明,肿瘤中体细胞变异的基因组、核苷酸和表观遗传背景的分布为癌症病因学提供了信息。最近,研究的一个新方向集中于从种系变异的背景中提取信号,有证据表明,这些因素定义的模式与致癌途径、组织学亚型和预后相关。使用捕获其基因组、核苷酸和表观遗传背景的元特征来聚集种系变异是否可以提高癌症风险预测仍然是一个悬而未决的问题。这种聚合方法可以潜在地提高检测稀有变异信号的统计能力,这些变异被假设为癌症遗传缺失的主要来源。我们使用英国生物库的种系全外显子测序数据,开发了 10 种癌症类型的风险模型,使用已知的风险变异(与癌症相关的 SNP 和已知癌症易感性基因中的致病性变异)以及另外包括元特征的模型。元特征并没有提高基于已知风险变异的模型的预测准确性。可能将该方法扩展到全基因组测序可以提高预测准确性。

意义:有证据表明,癌症部分是由尚未确定的罕见遗传变异引起的。我们使用新的统计方法和英国生物库的数据来研究这个问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67a1/10032232/c57de026febf/crc-22-0355_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67a1/10032232/c57de026febf/crc-22-0355_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67a1/10032232/c57de026febf/crc-22-0355_fig1.jpg

相似文献

[1]
Predicting Cancer Risk from Germline Whole-exome Sequencing Data Using a Novel Context-based Variant Aggregation Approach.

Cancer Res Commun. 2023-3

[2]
Substantial batch effects in TCGA exome sequences undermine pan-cancer analysis of germline variants.

BMC Cancer. 2019-8-7

[3]
Germline Mutations for Novel Candidate Predisposition Genes in Sporadic Schwannomatosis.

Clin Orthop Relat Res. 2020-11

[4]
Rare germline variants in childhood cancer patients suspected of genetic predisposition to cancer.

Genes Chromosomes Cancer. 2022-2

[5]
Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations.

J Hepatol. 2018-1-31

[6]
Whole Exome Sequencing Identifies Novel Genetic Alterations in Patients with Pheochromocytoma/Paraganglioma.

Endocrinol Metab (Seoul). 2020-12

[7]
Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients With Osteosarcoma.

JAMA Oncol. 2020-5-1

[8]
Germline variants and somatic mutation signatures of breast cancer across populations of African and European ancestry in the US and Nigeria.

Int J Cancer. 2019-6-27

[9]
A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal.

PLoS Comput Biol. 2018-2-7

[10]
Oncogenic effects of germline variants in lysosomal storage disease genes.

Genet Med. 2019-7-25

引用本文的文献

[1]
Early-Onset Ovarian Cancer <30 Years: What Do We Know about Its Genetic Predisposition?

Int J Mol Sci. 2023-11-30

本文引用的文献

[1]
Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data.

Nat Genet. 2022-3

[2]
Polygenic risk modeling for prediction of epithelial ovarian cancer risk.

Eur J Hum Genet. 2022-3

[3]
Performance of polygenic risk scores for cancer prediction in a racially diverse academic biobank.

Genet Med. 2022-3

[4]
Exome-Wide Pan-Cancer Analysis of Germline Variants in 8,719 Individuals Finds Little Evidence of Rare Variant Associations.

Hum Hered. 2021

[5]
Exome sequencing and analysis of 454,787 UK Biobank participants.

Nature. 2021-11

[6]
Population sequencing data reveal a compendium of mutational processes in the human germ line.

Science. 2021-8-27

[7]
Rare variant contribution to human disease in 281,104 UK Biobank exomes.

Nature. 2021-9

[8]
Advancing human genetics research and drug discovery through exome sequencing of the UK Biobank.

Nat Genet. 2021-7

[9]
Mining mutation contexts across the cancer genome to map tumor site of origin.

Nat Commun. 2021-5-24

[10]
The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation.

Nat Genet. 2021-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索