Suppr超能文献

钴催化的自由基介导的碳-碳断裂——一种自由基型迁移插入反应。

Cobalt-catalyzed radical-mediated carbon-carbon scission a radical-type migratory insertion.

作者信息

Liu Jian-Biao, Liu Xiao-Jun, Oliveira João C A, Chen De-Zhan, Ackermann Lutz

机构信息

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University Jinan 250014 China

Institut für Organische und Biomolekulare Chemie, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany

出版信息

Chem Sci. 2023 Feb 28;14(12):3352-3362. doi: 10.1039/d2sc05200h. eCollection 2023 Mar 22.

Abstract

Migratory insertions of alkenes into metal-carbon (M-C) bonds are elementary steps in diverse catalytic processes. In the present work, a radical-type migratory insertion that involves concerted but asynchronous M-C homolysis and radical attack was revealed by computations. Inspired by the radical nature of the proposed migratory insertion, a distinct cobalt-catalyzed radical-mediated carbon-carbon (C-C) cleavage mechanism was proposed for alkylidenecyclopropanes (ACPs). This unique C-C activation is key to rationalizing the experimentally observed selectivity for the coupling between benzamides and ACPs. Furthermore, the C(sp)-H activation in the coupling reaction occurs the proton-coupled electron transfer (PCET) mechanism rather than the originally proposed concerted metalation-deprotonation (CMD) pathway. The ring opening strategy may stimulate further development and discovery of novel radical transformations.

摘要

烯烃向金属 - 碳(M - C)键的迁移插入是多种催化过程中的基本步骤。在本工作中,通过计算揭示了一种涉及协同但不同步的M - C均裂和自由基进攻的自由基型迁移插入。受所提出的迁移插入的自由基性质启发,针对亚烷基环丙烷(ACP)提出了一种独特的钴催化自由基介导的碳 - 碳(C - C)裂解机制。这种独特的C - C活化是合理解释实验观察到的苯甲酰胺与ACP之间偶联选择性的关键。此外,偶联反应中的C(sp) - H活化通过质子耦合电子转移(PCET)机制发生,而不是最初提出的协同金属化 - 去质子化(CMD)途径。开环策略可能会刺激新型自由基转化的进一步发展和发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459f/10033940/79b058674120/d2sc05200h-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验