Bowyer Jack E, Chakravarti Deboki, Wong Wilson W, Bates Declan G
School of Engineering University of Warwick Coventry CV4 7AL UK.
Warwick Integrative Synthetic Biology Centre Coventry CV4 7AL UK.
Eng Biol. 2020 Mar 24;4(1):10-19. doi: 10.1049/enb.2019.0020. eCollection 2020 Mar.
Inducible genetic switches based on tyrosine recombinase-based DNA excision are a promising platform for the regulation and control of chimeric antigen receptor (CAR) T cell activity in cancer immunotherapy. These switches exploit the increased stability of DNA excision in tyrosine recombinases through an inversion-excision circuit design. Here, the authors develop the first mechanistic mathematical model of switching dynamics in tyrosine recombinases and validate it against experimental data through both global optimisation and statistical approximation approaches. Analysis of this model provides guidelines regarding which system parameters are best suited to experimental tuning in order to establish optimal switch performance in vivo. In particular, they find that the switching response can be made significantly faster by increasing the concentration of the inducer drug 4-OHT and/or by using promoters generating higher expression levels of the FlpO recombinase.
基于酪氨酸重组酶介导的DNA切除的诱导型基因开关,是癌症免疫治疗中调控嵌合抗原受体(CAR)T细胞活性的一个很有前景的平台。这些开关通过倒位-切除电路设计,利用了酪氨酸重组酶中DNA切除稳定性的增强。在此,作者开发了首个酪氨酸重组酶开关动力学的机制数学模型,并通过全局优化和统计近似方法,根据实验数据对其进行了验证。对该模型的分析提供了相关指导方针,即哪些系统参数最适合进行实验调整,以便在体内建立最佳的开关性能。特别是,他们发现通过增加诱导药物4-羟基他莫昔芬(4-OHT)的浓度和/或使用能产生更高FlpO重组酶表达水平的启动子,可以使开关反应显著加快。