Weinberg Benjamin H, Pham N T Hang, Caraballo Leidy D, Lozanoski Thomas, Engel Adrien, Bhatia Swapnil, Wong Wilson W
Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA.
Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Nat Biotechnol. 2017 May;35(5):453-462. doi: 10.1038/nbt.3805. Epub 2017 Mar 27.
Engineered genetic circuits for mammalian cells often require extensive fine-tuning to perform as intended. We present a robust, general, scalable system, called 'Boolean logic and arithmetic through DNA excision' (BLADE), to engineer genetic circuits with multiple inputs and outputs in mammalian cells with minimal optimization. The reliability of BLADE arises from its reliance on recombinases under the control of a single promoter, which integrates circuit signals on a single transcriptional layer. We used BLADE to build 113 circuits in human embryonic kidney and Jurkat T cells and devised a quantitative, vector-proximity metric to evaluate their performance. Of 113 circuits analyzed, 109 functioned (96.5%) as intended without optimization. The circuits, which are available through Addgene, include a 3-input, two-output full adder; a 6-input, one-output Boolean logic look-up table; circuits with small-molecule-inducible control; and circuits that incorporate CRISPR-Cas9 to regulate endogenous genes. BLADE enables execution of sophisticated cellular computation in mammalian cells, with applications in cell and tissue engineering.
用于哺乳动物细胞的工程化遗传电路通常需要进行大量精细调整才能按预期运行。我们提出了一种强大、通用且可扩展的系统,称为“通过DNA切除实现布尔逻辑与算术”(BLADE),用于在哺乳动物细胞中构建具有多个输入和输出的遗传电路,且只需最少的优化。BLADE的可靠性源于其依赖于单个启动子控制下的重组酶,该重组酶在单个转录层上整合电路信号。我们使用BLADE在人胚肾细胞和Jurkat T细胞中构建了113个电路,并设计了一种定量的、基于载体接近度的指标来评估它们的性能。在分析的113个电路中,有109个(96.5%)未经优化就按预期运行。这些电路可通过Addgene获得,包括一个三输入、双输出的全加器;一个六输入、单输出的布尔逻辑查找表;具有小分子诱导控制的电路;以及整合CRISPR-Cas9以调控内源基因的电路。BLADE能够在哺乳动物细胞中执行复杂的细胞计算,在细胞和组织工程中有应用。