Suppr超能文献

数字暴露组学:利用传感器融合和深度学习量化城市环境对健康的影响。

DigitalExposome: quantifying impact of urban environment on wellbeing using sensor fusion and deep learning.

作者信息

Johnson Thomas, Kanjo Eiman, Woodward Kieran

机构信息

Department of Computer Science, Nottingham Trent University, Nottingham, UK.

出版信息

Comput Urban Sci. 2023;3(1):14. doi: 10.1007/s43762-023-00088-9. Epub 2023 Mar 20.

Abstract

The increasing level of air pollutants (e.g. particulates, noise and gases) within the atmosphere are impacting mental wellbeing. In this paper, we define the term 'DigitalExposome' as a conceptual framework that takes us closer towards understanding the relationship between environment, personal characteristics, behaviour and wellbeing using multimodal mobile sensing technology. Specifically, we simultaneously collected (for the first time) multi-sensor data including urban environmental factors (e.g. air pollution including: Particulate Matter (PM1), (PM2.5), (PM10), Oxidised, Reduced, Ammonia (NH3) and Noise, People Count in the vicinity), body reaction (physiological reactions including: EDA, HR, HRV, Body Temperature, BVP and movement) and individuals' perceived responses (e.g. self-reported valence) in urban settings. Our users followed a pre-specified urban path and collected the data using a comprehensive sensing edge device. The data is instantly fused, time-stamped and geo-tagged at the point of collection. A range of multivariate statistical analysis techniques have been applied including Principle Component Analysis, Regression and Spatial Visualisations to unravel the relationship between the variables. Results showed that Electrodermal Activity (EDA) and Heart Rate Variability (HRV) are noticeably impacted by the level of Particulate Matter in the environment. Furthermore, we adopted Convolutional Neural Network (CNN) to classify self-reported wellbeing from the multimodal dataset which achieved an f1-score of 0.76.

摘要

大气中空气污染物(如颗粒物、噪音和气体)水平的不断上升正在影响心理健康。在本文中,我们将“数字暴露组”定义为一个概念框架,它借助多模态移动传感技术,使我们更接近理解环境、个人特征、行为与健康之间的关系。具体而言,我们(首次)同时收集了多传感器数据,包括城市环境因素(如空气污染,包括:颗粒物(PM1)、(PM2.5)、(PM10)、氧化态、还原态、氨(NH3)和噪音、附近的人数)、身体反应(生理反应,包括:皮肤电活动、心率、心率变异性、体温、血压和运动)以及个体在城市环境中的感知反应(如自我报告的效价)。我们的用户沿着预先指定的城市路径,使用综合传感边缘设备收集数据。数据在收集点立即进行融合、时间标记和地理标记。已应用一系列多元统计分析技术,包括主成分分析、回归分析和空间可视化,以揭示变量之间的关系。结果表明,皮肤电活动(EDA)和心率变异性(HRV)受到环境中颗粒物水平的显著影响。此外,我们采用卷积神经网络(CNN)从多模态数据集中对自我报告的健康状况进行分类,f1分数达到0.76。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e452/10025809/5b3fa4a34ad3/43762_2023_88_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验