Suppr超能文献

一种基于新型生物标志物和临床风险因素的评分系统,用于预测免疫功能正常的重症患者的侵袭性念珠菌病。

A scoring system based on novel biomarkers and clinical risk factors to predict invasive candidiasis in immunocompetent critically ill patients.

作者信息

Li Wen, Chen Gang, Lin Fengyu, Yang Hang, Cui Yanhui, Lu Rongli, Song Chao, Li Haitao, Li Yi, Pan Pinhua

机构信息

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.

Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.

出版信息

Front Microbiol. 2023 Mar 9;14:1097574. doi: 10.3389/fmicb.2023.1097574. eCollection 2023.

Abstract

BACKGROUND

Delayed diagnosis further increases the mortality of invasive candidiasis (IC) in intensive care unit (ICU) patients. This study aimed to develop and validate a score based on novel serological biomarkers and clinical risk factors for predicting IC in immunocompetent ICU patients.

METHODS

We retrospectively collected clinical data and novel serological markers on admission to ICU. Multivariate logistic regression was used to identify the risk factors associated with IC, which were adopted to establish a scoring system.

RESULTS

Patients with IC had a higher C-reactive protein-to-albumin ratio (CAR) and neutrophil-to-lymphocyte ratio (NLR) and lower prognostic nutritional index than those without IC. The NLR, CAR, sepsis, total parenteral nutrition, 1,3-β-D-glucan (BDG)-positivity, and Sequential Organ Failure Assessment score were identified as independent risk factors for IC by multivariate logistic regression analysis and entered into the final scoring system. The area under receiver operating characteristic curve of the score were 0.883 and 0.892, respectively, in the development and validation cohort, higher than Candida score (0.883 vs.0.730,  < 0.001).

CONCLUSION

We established a parsimonious score based on NLR, CAR, BDG-positivity, and clinical risk factors, which can accurately identify IC in ICU patients to give treatment on time and reduce mortality.

摘要

背景

延迟诊断会进一步增加重症监护病房(ICU)患者侵袭性念珠菌病(IC)的死亡率。本研究旨在开发并验证一种基于新型血清生物标志物和临床风险因素的评分系统,用于预测免疫功能正常的ICU患者的IC。

方法

我们回顾性收集了ICU入院时的临床数据和新型血清学标志物。采用多因素逻辑回归分析确定与IC相关的危险因素,并据此建立评分系统。

结果

与未患IC的患者相比,IC患者的C反应蛋白与白蛋白比值(CAR)和中性粒细胞与淋巴细胞比值(NLR)更高,而预后营养指数更低。通过多因素逻辑回归分析确定NLR、CAR、脓毒症、全胃肠外营养、1,3-β-D-葡聚糖(BDG)阳性及序贯器官衰竭评估评分是IC的独立危险因素,并纳入最终评分系统。该评分系统在开发队列和验证队列中的受试者工作特征曲线下面积分别为0.883和0.892,高于念珠菌评分(0.883对0.730,<0.001)。

结论

我们基于NLR、CAR、BDG阳性及临床风险因素建立了一个简洁的评分系统,该系统可准确识别ICU患者中的IC,以便及时进行治疗并降低死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a462/10033536/ac4758e02b41/fmicb-14-1097574-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验