Suppr超能文献

RNA 结合蛋白 MdHYL1 调控苹果的抗寒性和抗病性。

The RNA-binding protein MdHYL1 modulates cold tolerance and disease resistance in apple.

机构信息

State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Shaanxi 712100, China.

出版信息

Plant Physiol. 2023 Jul 3;192(3):2143-2160. doi: 10.1093/plphys/kiad187.

Abstract

Apple (Malus domestica) trees often experience various abiotic and biotic stresses. However, due to the long juvenile period of apple and its high degree of genetic heterozygosity, only limited progress has been made in developing cold-hardy and disease-resistant cultivars through traditional approaches. Numerous studies reveal that biotechnology is a feasible approach to improve stress tolerance in woody perennial plants. HYPONASTIC LEAVES1 (HYL1), a double-stranded RNA-binding protein, is a key regulator involved in apple drought stress response. However, whether HYL1 participates in apple cold response and pathogen resistance remains unknown. In this study, we revealed that MdHYL1 plays a positive role in cold tolerance and pathogen resistance in apple. MdHYL1 acted upstream to positively regulate freezing tolerance and Alternaria alternata resistance by positively modulating transcripts of MdMYB88 and MdMYB124 in response to cold stress or A. alternata infection. In addition, MdHYL1 regulated the biogenesis of several miRNAs responsive to cold and A. alternata infection in apple. Furthermore, we identified Mdm-miRNA156 (Mdm-miR156) as a negative regulator of cold tolerance and Mdm-miRNA172 (Mdm-miR172) as a positive regulator of cold tolerance, and that Mdm-miRNA160 (Mdm-miR160) decreased plant resistance to infection by A. alternata. In summary, we highlight the molecular role of MdHYL1 regarding cold tolerance and A. alternata infection resistance, thereby providing candidate genes for breeding apple with freezing tolerance and A. alternata resistance using biotechnology.

摘要

苹果树经常受到各种非生物和生物胁迫的影响。然而,由于苹果的幼年期长且遗传杂合度高,通过传统方法开发耐寒和抗病品种的进展有限。许多研究表明,生物技术是提高木本多年生植物抗胁迫能力的可行方法。HYL1 是一种双链 RNA 结合蛋白,是参与苹果干旱胁迫反应的关键调节因子。然而,HYL1 是否参与苹果的冷响应和抗病性尚不清楚。在本研究中,我们揭示了 MdHYL1 在苹果的耐寒性和抗病性中发挥积极作用。MdHYL1 通过正向调控冷胁迫或 A. alternata 感染时 MdMYB88 和 MdMYB124 的转录本,在上游正向调控苹果的耐寒性和 A. alternata 抗性。此外,MdHYL1 调控了苹果中几种响应冷和 A. alternata 感染的 miRNA 的生物发生。此外,我们鉴定出 Mdm-miRNA156(Mdm-miR156)是耐寒性的负调控因子,Mdm-miRNA172(Mdm-miR172)是耐寒性的正调控因子,Mdm-miRNA160(Mdm-miR160)降低了植物对 A. alternata 感染的抗性。总之,我们强调了 MdHYL1 对耐寒性和 A. alternata 感染抗性的分子作用,从而为利用生物技术培育具有耐寒性和 A. alternata 抗性的苹果提供了候选基因。

相似文献

1
The RNA-binding protein MdHYL1 modulates cold tolerance and disease resistance in apple.
Plant Physiol. 2023 Jul 3;192(3):2143-2160. doi: 10.1093/plphys/kiad187.
3
Mdm-miR160-MdARF17-MdWRKY33 module mediates freezing tolerance in apple.
Plant J. 2023 Apr;114(2):262-278. doi: 10.1111/tpj.16132. Epub 2023 Feb 20.
4
MdZAT5 regulates drought tolerance via mediating accumulation of drought-responsive miRNAs and mRNAs in apple.
New Phytol. 2022 Dec;236(6):2131-2150. doi: 10.1111/nph.18512. Epub 2022 Nov 4.
5
Apple SERRATE negatively mediates drought resistance by regulating MdMYB88 and MdMYB124 and microRNA biogenesis.
Hortic Res. 2020 Jul 1;7(1):98. doi: 10.1038/s41438-020-0320-6. eCollection 2020.
6
Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response.
Plant Physiol Biochem. 2021 Nov;168:83-92. doi: 10.1016/j.plaphy.2021.10.003. Epub 2021 Oct 4.
8
Apple TIME FOR COFFEE contributes to freezing tolerance by promoting unsaturation of fatty acids.
Plant Sci. 2021 Jan;302:110695. doi: 10.1016/j.plantsci.2020.110695. Epub 2020 Oct 17.
9
Transcription factors MhDREB2A/MhZAT10 play a role in drought and cold stress response crosstalk in apple.
Plant Physiol. 2023 Jul 3;192(3):2203-2220. doi: 10.1093/plphys/kiad147.

引用本文的文献

1
Engineering saline-alkali-tolerant apple rootstocks by overexpressing in M9-T337.
Mol Breed. 2025 Jun 25;45(7):58. doi: 10.1007/s11032-025-01579-9. eCollection 2025 Jul.
2
Non-coding RNAs in plant stress responses: molecular insights and agricultural applications.
Plant Biotechnol J. 2025 Aug;23(8):3195-3233. doi: 10.1111/pbi.70134. Epub 2025 May 23.
3
Pan-genome analysis reveals the evolution and diversity of Malus.
Nat Genet. 2025 May;57(5):1274-1286. doi: 10.1038/s41588-025-02166-6. Epub 2025 Apr 16.
4
Integrative analyses reveal Bna-miR397a-BnaLAC2 as a potential modulator of low-temperature adaptability in Brassica napus L.
Plant Biotechnol J. 2025 Jun;23(6):1968-1987. doi: 10.1111/pbi.70017. Epub 2025 Mar 4.
6
Characterization of tae-miR156(s) and their response to abiotic stress in wheat (Triticum aestivum L.).
BMC Plant Biol. 2024 Dec 4;24(1):1165. doi: 10.1186/s12870-024-05899-4.
8
Insights into the molecular mechanisms underlying responses of apple trees to abiotic stresses.
Hortic Res. 2023 Jul 27;10(8):uhad144. doi: 10.1093/hr/uhad144. eCollection 2023 Aug.
9
Focus on fruit crops.
Plant Physiol. 2023 Jul 3;192(3):1659-1665. doi: 10.1093/plphys/kiad259.

本文引用的文献

2
SQUINT Positively Regulates Resistance to the Pathogen Botrytis cinerea via miR156-SPL9 Module in Arabidopsis.
Plant Cell Physiol. 2022 Oct 31;63(10):1414-1432. doi: 10.1093/pcp/pcac042.
6
Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response.
Plant Physiol Biochem. 2021 Nov;168:83-92. doi: 10.1016/j.plaphy.2021.10.003. Epub 2021 Oct 4.
7
Multiple Functions of MYB Transcription Factors in Abiotic Stress Responses.
Int J Mol Sci. 2021 Jun 7;22(11):6125. doi: 10.3390/ijms22116125.
10
Abscisic acid homeostasis is mediated by feedback regulation of MdMYB88 and MdMYB124.
J Exp Bot. 2021 Feb 2;72(2):592-607. doi: 10.1093/jxb/eraa449.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验