Suppr超能文献

将真实世界数据纳入临床研究的贝叶斯方法。

Bayesian approaches to include real-world data in clinical studies.

作者信息

Müller P, Chandra N K, Sarkar A

机构信息

Department of Statistics and Data Sciences, The University of Texas at Austin, 2317 Speedway D9800, Austin, TX 78712-1823, USA.

Department of Mathematical Sciences, The University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080-3021, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220158. doi: 10.1098/rsta.2022.0158. Epub 2023 Mar 27.

Abstract

Randomized clinical trials have been the mainstay of clinical research, but are prohibitively expensive and subject to increasingly difficult patient recruitment. Recently, there is a movement to use real-world data (RWD) from electronic health records, patient registries, claims data and other sources in lieu of or supplementing controlled clinical trials. This process of combining information from diverse sources calls for inference under a Bayesian paradigm. We review some of the currently used methods and a novel non-parametric Bayesian (BNP) method. Carrying out the desired adjustment for differences in patient populations is naturally done with BNP priors that facilitate understanding of and adjustment for population heterogeneities across different data sources. We discuss the particular problem of using RWD to create a synthetic control arm to supplement single-arm treatment only studies. At the core of the proposed approach is the model-based adjustment to achieve equivalent patient populations in the current study and the (adjusted) RWD. This is implemented using common atoms mixture models. The structure of such models greatly simplifies inference. The adjustment for differences in the populations can be reduced to ratios of weights in such mixtures. This article is part of the theme issue 'Bayesian inference: challenges, perspectives, and prospects'.

摘要

随机临床试验一直是临床研究的支柱,但成本过高且患者招募难度日益增大。最近,出现了一种利用电子健康记录、患者登记数据库、理赔数据及其他来源的真实世界数据(RWD)来替代或补充对照临床试验的趋势。这种整合来自不同来源信息的过程需要在贝叶斯范式下进行推断。我们回顾了一些当前使用的方法以及一种新颖的非参数贝叶斯(BNP)方法。利用BNP先验对患者群体差异进行所需的调整自然可行,这有助于理解和调整不同数据源之间的群体异质性。我们讨论了使用RWD创建合成对照臂以补充仅采用单臂治疗研究的特殊问题。所提出方法的核心是基于模型的调整,以使当前研究和(经调整的)RWD中的患者群体等效。这通过常见原子混合模型来实现。此类模型的结构极大地简化了推断。群体差异的调整可简化为此类混合中权重的比率。本文是主题为“贝叶斯推断:挑战、观点与前景”的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验