Suppr超能文献

贝叶斯聚类分析。

Bayesian cluster analysis.

机构信息

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, James Clerk Maxwell Building, Edinburgh, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2023 May 15;381(2247):20220149. doi: 10.1098/rsta.2022.0149. Epub 2023 Mar 27.

Abstract

Bayesian cluster analysis offers substantial benefits over algorithmic approaches by providing not only point estimates but also uncertainty in the clustering structure and patterns within each cluster. An overview of Bayesian cluster analysis is provided, including both model-based and loss-based approaches, along with a discussion on the importance of the kernel or loss selected and prior specification. Advantages are demonstrated in an application to cluster cells and discover latent cell types in single-cell RNA sequencing data to study embryonic cellular development. Lastly, we focus on the ongoing debate between finite and infinite mixtures in a model-based approach and robustness to model misspecification. While much of the debate and asymptotic theory focuses on the marginal posterior of the number of clusters, we empirically show that quite a different behaviour is obtained when estimating the full clustering structure. This article is part of the theme issue 'Bayesian inference: challenges, perspectives, and prospects'.

摘要

贝叶斯聚类分析通过提供不仅是点估计,还有聚类结构和每个聚类内模式的不确定性,为算法方法提供了实质性的优势。提供了贝叶斯聚类分析的概述,包括基于模型和基于损失的方法,以及讨论了选择的核或损失函数和先验规范的重要性。在单细胞 RNA 测序数据中聚类细胞并发现潜在细胞类型的应用中展示了优势,以研究胚胎细胞发育。最后,我们专注于基于模型方法中有限和无限混合的持续争论以及对模型误设的稳健性。虽然大部分争论和渐近理论都集中在聚类数量的边际后验上,但我们通过实证表明,在估计完整聚类结构时,会得到截然不同的结果。本文是“贝叶斯推理:挑战、观点和前景”主题问题的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f007/10041359/e40875199a42/rsta20220149f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验