Suppr超能文献

Scholte 波法在超声表面波弹性成像中的应用。

A Scholte wave approach for ultrasonic surface acoustic wave elastography.

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.

Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, USA.

出版信息

Med Phys. 2023 Jul;50(7):4138-4150. doi: 10.1002/mp.16394. Epub 2023 Apr 5.

Abstract

BACKGROUND

Pathological changes in tissues are often related to changes in tissue mechanical properties, making elastography an important tool for medical applications. Among the existing elastography methods, ultrasound elastography is of great interest due to the inherent advantages of ultrasound imaging technology, such as low cost, portability, safety, and wide availability. Although ultrasonic shear wave elastography, as a platform technology, can potentially quantify the elasticity of tissue at any depth, its current implementation cannot assess superficial tissue but can only image deep tissue.

PURPOSE

To address this challenge, we proposed an ultrasonic Scholte-wave-based approach for imaging the elasticity of superficial tissue.

METHODS

The feasibility of the proposed technique was tested using a gelatin phantom with a cylindrical inclusion. To generate Scholte wave in the superficial region of the phantom, we proposed a new experimental configuration in which a liquid layer was introduced between an ultrasound imaging transducer and the tissue-mimicking phantom. We utilized an acoustic radiation force impulse to excite the tissue-mimicking phantom, analyzed the properties of the generated Scholte waves, and applied the waves for elasticity imaging.

RESULTS

In this study, we first reported the observation that Scholte (surface) waves and shear (bulk) waves were simultaneously generated, and they propagated in the superficial and deeper regions of the phantom, respectively. Then, we presented some important properties of the generated Scholte waves. For a 5w/v% gelatin phantom, the generated Scholte waves have a speed of around 0.9 m/s, a frequency of about 186 Hz, and thus a wavelength of about 4.8 mm. The speed ratio between the simultaneously generated Scholte wave and shear wave is about 0.717, which is 15% lower than the theoretical expectation. And we further demonstrated the feasibility of Scholte wave as a mechanism for imaging superficial tissue elasticity. Together with the simultaneously generated shear wave, the Scholte wave was shown to be able to quantitatively image both the background and the cylindrical inclusion (4 mm in diameter) of the tissue-mimicking gelatin phantom.

CONCLUSIONS

This work shows that the elasticity of superficial tissue can be evaluated by utilizing the generated Scholte wave alone, and it also shows that a comprehensive elasticity imaging of the tissue extending from the superficial to deep regions can be achieved by combining the proposed Scholte wave technique and the conventional shear wave technique.

摘要

背景

组织的病理变化通常与组织力学性质的变化有关,这使得弹性成像成为医学应用中的重要工具。在现有的弹性成像方法中,由于超声成像技术具有成本低、便携性、安全性和广泛可用性等固有优势,超声弹性成像技术引起了极大的关注。尽管超声剪切波弹性成像作为一种平台技术,有可能定量评估任何深度的组织弹性,但它目前的实现方式无法评估浅层组织,只能对深层组织成像。

目的

为了解决这一挑战,我们提出了一种基于超声 Scholte 波的浅层组织弹性成像方法。

方法

我们使用带有圆柱形内含物的明胶体模来测试该技术的可行性。为了在体模的浅层区域产生 Scholte 波,我们提出了一种新的实验配置,在该配置中,在超声成像换能器和组织模拟体模之间引入了一层液体。我们利用声辐射力脉冲激励组织模拟体模,分析产生的 Scholte 波的特性,并将这些波用于弹性成像。

结果

在这项研究中,我们首先报道了观察到 Scholte(表面)波和剪切(体)波同时产生,并且它们分别在体模的浅层和深层传播。然后,我们介绍了产生的 Scholte 波的一些重要特性。对于 5w/v%的明胶体模,产生的 Scholte 波速度约为 0.9 m/s,频率约为 186 Hz,因此波长约为 4.8 mm。同时产生的 Scholte 波和剪切波的速度比约为 0.717,比理论预期低 15%。我们进一步证明了 Scholte 波作为成像浅层组织弹性的机制的可行性。与同时产生的剪切波一起,Scholte 波能够定量地对组织模拟明胶体模的背景和圆柱形内含物(直径 4mm)成像。

结论

这项工作表明,可以单独利用产生的 Scholte 波来评估浅层组织的弹性,并且还表明,可以通过结合所提出的 Scholte 波技术和常规剪切波技术来实现对从浅层到深层的组织的全面弹性成像。

相似文献

1
A Scholte wave approach for ultrasonic surface acoustic wave elastography.
Med Phys. 2023 Jul;50(7):4138-4150. doi: 10.1002/mp.16394. Epub 2023 Apr 5.
3
The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
Ultrasound Med Biol. 2015 Feb;41(2):601-9. doi: 10.1016/j.ultrasmedbio.2014.09.028. Epub 2014 Dec 23.
4
Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
Ultraschall Med. 2016 Feb;37(1):1-5. doi: 10.1055/s-0035-1567037. Epub 2016 Feb 12.
5
Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Apr;62(4):647-62. doi: 10.1109/TUFFC.2014.006805.
9
Shear wave elasticity imaging based on acoustic radiation force and optical detection.
Ultrasound Med Biol. 2012 Sep;38(9):1637-45. doi: 10.1016/j.ultrasmedbio.2012.04.022. Epub 2012 Jun 30.
10
A diffraction correction for storage and loss moduli imaging using radiation force based elastography.
Phys Med Biol. 2017 Jan 7;62(1):91-106. doi: 10.1088/1361-6560/62/1/91. Epub 2016 Dec 14.

引用本文的文献

2
Mathematical Models for Ultrasound Elastography: Recent Advances to Improve Accuracy and Clinical Utility.
Bioengineering (Basel). 2024 Sep 30;11(10):991. doi: 10.3390/bioengineering11100991.

本文引用的文献

2
An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases.
Ultrasound Med Biol. 2018 Feb;44(2):321-331. doi: 10.1016/j.ultrasmedbio.2017.10.010. Epub 2017 Dec 1.
4
Ultrasound Elastography: Review of Techniques and Clinical Applications.
Theranostics. 2017 Mar 7;7(5):1303-1329. doi: 10.7150/thno.18650. eCollection 2017.
5
Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity.
Phys Med Biol. 2017 May 21;62(10):4083-4106. doi: 10.1088/1361-6560/aa6674. Epub 2017 Apr 20.
6
Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia.
Phys Med Biol. 2016 Jul 21;61(14):5275-96. doi: 10.1088/0031-9155/61/14/5275. Epub 2016 Jun 29.
9
Ultrafast imaging in biomedical ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jan;61(1):102-19. doi: 10.1109/TUFFC.2014.6689779.
10
Elasticity as a biomarker for prostate cancer: a systematic review.
BJU Int. 2014 Apr;113(4):523-34. doi: 10.1111/bju.12236. Epub 2013 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验