Khuu Thien, Rana Abhijit, Edington Sean C, Yang Nan, McCoy Anne B, Johnson Mark A
Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States.
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
J Am Soc Mass Spectrom. 2023 Apr 5;34(4):737-744. doi: 10.1021/jasms.3c00007. Epub 2023 Mar 27.
The formation of isomers when trapping floppy cluster ions in a temperature-controlled ion trap is a generally observed phenomenon. This involves collisional quenching of the ions initially formed at high temperature by buffer gas cooling until their internal energies fall below the barriers in the potential energy surface that separate them. Here we explore the kinetics at play in the case of the two isomers adopted by the H(HO) cluster ion that differ in the proton accommodation motif. One of these is most like the Eigen cation with a tricoordinated hydronium motif (denoted ), and the other is most like the Zundel ion with the proton equally shared between two water molecules (denoted ). After initial cooling to about 20 K in the radiofrequency (Paul) trap, the relative populations of these two spectroscopically distinct isomers are abruptly changed through isomer-selective photoexcitation of bands in the OH stretching region with a pulsed (∼6 ns) infrared laser while the ions are in the trap. We then monitor the relaxation of the vibrationally excited clusters and reformation of the two cold isomers by recording infrared photodissociation spectra with a second IR laser as a function of delay time from the initial excitation. The latter spectra are obtained after ejecting the trapped ions into a time-of-flight photofragmentation mass spectrometer, thus enabling long (∼0.1 s) delay times. Excitation of the isomer is observed to display long-lived vibrationally excited states that are collisionally cooled on a ms time scale, some of which quench into the isomer. These excited species then display spontaneous interconversion to the form on a ∼10 ms time scale. These qualitative observations set the stage for a series of experimental measurements that can provide quantitative benchmarks for theoretical simulations of cluster dynamics and the potential energy surfaces that underlie them.
在温度可控的离子阱中捕获松散团簇离子时形成异构体是一种普遍观察到的现象。这涉及到通过缓冲气体冷却对最初在高温下形成的离子进行碰撞猝灭,直到它们的内能降至将它们分开的势能面中的势垒以下。在这里,我们探讨了H(HO)团簇离子所采用的两种异构体在质子容纳模式上不同的情况下所起的动力学作用。其中一种最类似于具有三配位水合氢离子模式的本征阳离子(表示为 ),另一种最类似于质子在两个水分子之间平均共享的祖德尔离子(表示为 )。在射频(保罗)阱中初始冷却至约20 K后,当离子处于阱中时,通过用脉冲(约6 ns)红外激光对OH伸缩区域的谱带进行异构体选择性光激发,这两种光谱上不同的异构体的相对丰度会突然改变。然后,我们通过用第二台红外激光记录红外光解离光谱作为从初始激发开始的延迟时间的函数,来监测振动激发团簇的弛豫和两种冷异构体的重新形成。后者的光谱是在将捕获的离子喷射到飞行时间光碎片质谱仪中后获得的,从而能够实现长(约0.1 s)的延迟时间。观察到对 异构体的激发显示出长寿命的振动激发态,这些激发态在毫秒时间尺度上通过碰撞冷却,其中一些猝灭为 异构体。这些激发的 物种然后在约10毫秒的时间尺度上显示出自发转化为 形式。这些定性观察为一系列实验测量奠定了基础,这些实验测量可以为团簇动力学的理论模拟以及作为其基础的势能面提供定量基准。