语境相关学习的计算与神经基础。

The Computational and Neural Bases of Context-Dependent Learning.

机构信息

Department of Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; email:

Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom; email:

出版信息

Annu Rev Neurosci. 2023 Jul 10;46:233-258. doi: 10.1146/annurev-neuro-092322-100402. Epub 2023 Mar 27.

Abstract

Flexible behavior requires the creation, updating, and expression of memories to depend on context. While the neural underpinnings of each of these processes have been intensively studied, recent advances in computational modeling revealed a key challenge in context-dependent learning that had been largely ignored previously: Under naturalistic conditions, context is typically uncertain, necessitating contextual inference. We review a theoretical approach to formalizing context-dependent learning in the face of contextual uncertainty and the core computations it requires. We show how this approach begins to organize a large body of disparate experimental observations, from multiple levels of brain organization (including circuits, systems, and behavior) and multiple brain regions (most prominently the prefrontal cortex, the hippocampus, and motor cortices), into a coherent framework. We argue that contextual inference may also be key to understanding continual learning in the brain. This theory-driven perspective places contextual inference as a core component of learning.

摘要

灵活的行为需要根据上下文来创建、更新和表达记忆。虽然这些过程的神经基础都得到了深入研究,但最近计算建模的进展揭示了一个以前在很大程度上被忽视的、与上下文相关的学习的关键挑战:在自然条件下,上下文通常是不确定的,需要进行上下文推断。我们回顾了一种在面对上下文不确定性时形式化上下文相关学习的理论方法,以及它所需要的核心计算。我们展示了这种方法如何开始将大量不同的实验观察结果组织成一个连贯的框架,这些观察结果来自多个大脑组织层次(包括回路、系统和行为)和多个大脑区域(最突出的是前额叶皮层、海马体和运动皮层)。我们认为,上下文推断对于理解大脑中的持续学习也可能是关键。这种基于理论的观点将上下文推断作为学习的核心组成部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索