Suppr超能文献

一个用于理解成瘾现象的潜在原因框架的效用。

The utility of a latent-cause framework for understanding addiction phenomena.

作者信息

Pisupati Sashank, Langdon Angela, Konova Anna B, Niv Yael

机构信息

Limbic Limited, London UK.

Princeton Neuroscience Institute & Department of Psychology, Princeton University, Princeton NJ, USA.

出版信息

Addict Neurosci. 2024 Mar;10. doi: 10.1016/j.addicn.2024.100143. Epub 2024 Jan 15.

Abstract

Computational models of addiction often rely on a model-free reinforcement learning (RL) formulation, owing to the close associations between model-free RL, habitual behavior and the dopaminergic system. However, such formulations typically do not capture key recurrent features of addiction phenomena such as craving and relapse. Moreover, they cannot account for goal-directed aspects of addiction that necessitate contrasting, model-based formulations. Here we synthesize a growing body of evidence and propose that a latent-cause framework can help unify our understanding of several recurrent phenomena in addiction, by viewing them as the inferred return of previous, persistent "latent causes". We demonstrate that applying this framework to Pavlovian and instrumental settings can help account for defining features of craving and relapse such as outcome-specificity, generalization, and cyclical dynamics. Finally, we argue that this framework can bridge model-free and model-based formulations, and account for individual variability in phenomenology by accommodating the memories, beliefs, and goals of those living with addiction, motivating a centering of the individual, subjective experience of addiction and recovery.

摘要

成瘾的计算模型通常依赖于无模型强化学习(RL)公式,这是由于无模型RL、习惯性行为和多巴胺能系统之间存在密切关联。然而,此类公式通常无法捕捉成瘾现象的关键反复出现的特征,如渴望和复发。此外,它们无法解释成瘾的目标导向方面,而这需要基于模型的对比公式。在此,我们综合了越来越多的证据,并提出一个潜在原因框架可以帮助统一我们对成瘾中几种反复出现现象的理解,即将它们视为先前持续的“潜在原因”的推断回报。我们证明,将此框架应用于巴甫洛夫式和工具性情境中,可以帮助解释渴望和复发的定义特征,如结果特异性、泛化和周期性动态。最后,我们认为这个框架可以弥合无模型和基于模型的公式之间的差距,并通过考虑成瘾者的记忆、信念和目标来解释现象学中的个体差异,从而促使成瘾和康复的个体主观体验成为核心。

相似文献

5
A Multilevel Computational Characterization of Endophenotypes in Addiction.成瘾的多层次计算特征分析。
eNeuro. 2018 Jul 17;5(4). doi: 10.1523/ENEURO.0151-18.2018. eCollection 2018 Jul-Aug.
7
Addiction as Learned Behavior Patterns.成瘾作为习得的行为模式。
J Clin Med. 2019 Jul 24;8(8):1086. doi: 10.3390/jcm8081086.
9
Habits, action sequences and reinforcement learning.习惯、动作序列和强化学习。
Eur J Neurosci. 2012 Apr;35(7):1036-51. doi: 10.1111/j.1460-9568.2012.08050.x.
10
Goal-Directed and Habitual Control in Smokers.吸烟者的目标导向和习惯性控制。
Nicotine Tob Res. 2020 Feb 6;22(2):188-195. doi: 10.1093/ntr/ntz001.

引用本文的文献

1
Integrating and fragmenting memories under stress and alcohol.在压力和酒精作用下整合与碎片化记忆
Neurobiol Stress. 2024 Feb 8;30:100615. doi: 10.1016/j.ynstr.2024.100615. eCollection 2024 May.

本文引用的文献

1
The Computational and Neural Bases of Context-Dependent Learning.语境相关学习的计算与神经基础。
Annu Rev Neurosci. 2023 Jul 10;46:233-258. doi: 10.1146/annurev-neuro-092322-100402. Epub 2023 Mar 27.
2
Computational models of subjective feelings in psychiatry.精神病学中主观感受的计算模型。
Neurosci Biobehav Rev. 2023 Feb;145:105008. doi: 10.1016/j.neubiorev.2022.105008. Epub 2022 Dec 19.
3
Abstract task representations for inference and control.抽象任务表示用于推理和控制。
Trends Cogn Sci. 2022 Jun;26(6):484-498. doi: 10.1016/j.tics.2022.03.009. Epub 2022 Apr 22.
7
10
"Chasing the first high": memory sampling in drug choice.“追逐首次快感”:药物选择中的记忆抽样
Neuropsychopharmacology. 2020 May;45(6):907-915. doi: 10.1038/s41386-019-0594-2. Epub 2020 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验