Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China.
Nat Commun. 2024 Sep 27;15(1):8275. doi: 10.1038/s41467-024-52289-3.
Cognitive flexibility is a fundamental ability that enables humans and animals to exhibit appropriate behaviors in various contexts. The thalamocortical interactions between the prefrontal cortex (PFC) and the mediodorsal thalamus (MD) have been identified as crucial for inferring temporal context, a critical component of cognitive flexibility. However, the neural mechanism responsible for context inference remains unknown. To address this issue, we propose a PFC-MD neural circuit model that utilizes a Hebbian plasticity rule to support rapid, online context inference. Specifically, the model MD thalamus can infer temporal contexts from prefrontal inputs within a few trials. This is achieved through the use of PFC-to-MD synaptic plasticity with pre-synaptic traces and adaptive thresholding, along with winner-take-all normalization in the MD. Furthermore, our model thalamus gates context-irrelevant neurons in the PFC, thus facilitating continual learning. We evaluate our model performance by having it sequentially learn various cognitive tasks. Incorporating an MD-like component alleviates catastrophic forgetting of previously learned contexts and demonstrates the transfer of knowledge to future contexts. Our work provides insight into how biological properties of thalamocortical circuits can be leveraged to achieve rapid context inference and continual learning.
认知灵活性是一种基本能力,使人类和动物能够在各种情境下表现出适当的行为。前额叶皮层(PFC)和中背侧丘脑(MD)之间的丘脑皮质相互作用被认为是推断时间背景的关键,而时间背景是认知灵活性的一个关键组成部分。然而,负责上下文推断的神经机制仍然未知。为了解决这个问题,我们提出了一个 PFC-MD 神经回路模型,该模型利用赫布氏可塑性规则来支持快速、在线的上下文推断。具体来说,该模型的 MD 丘脑可以在几次试验内从前额叶输入中推断出时间背景。这是通过使用具有前突触痕迹和自适应门限的 PFC 到 MD 的突触可塑性以及 MD 中的胜者全拿归一化来实现的。此外,我们的模型丘脑门控 PFC 中的与上下文无关的神经元,从而促进持续学习。我们通过让模型依次学习各种认知任务来评估模型性能。引入 MD 样组件可以缓解先前学习的上下文的灾难性遗忘,并展示了将知识转移到未来上下文的能力。我们的工作提供了关于如何利用丘脑皮质回路的生物特性来实现快速上下文推断和持续学习的见解。
Nat Commun. 2024-9-27
Nat Commun. 2025-3-18
Trends Cogn Sci. 2024-8
Nat Neurosci. 2018-11-19
Eur J Neurosci. 2016-8
Neurosci Biobehav Rev. 2015-7
Cell Rep Med. 2025-5-20
Nat Commun. 2025-3-18
Neuron. 2024-3-20
Annu Rev Neurosci. 2023-7-10
Trends Neurosci. 2023-3
PLoS Comput Biol. 2022-9
Nat Neurosci. 2022-6
Nat Neurosci. 2022-6