文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用递归神经网络进行丘脑皮质模型中的快速上下文推断。

Rapid context inference in a thalamocortical model using recurrent neural networks.

机构信息

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.

Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Nat Commun. 2024 Sep 27;15(1):8275. doi: 10.1038/s41467-024-52289-3.


DOI:10.1038/s41467-024-52289-3
PMID:39333467
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11436643/
Abstract

Cognitive flexibility is a fundamental ability that enables humans and animals to exhibit appropriate behaviors in various contexts. The thalamocortical interactions between the prefrontal cortex (PFC) and the mediodorsal thalamus (MD) have been identified as crucial for inferring temporal context, a critical component of cognitive flexibility. However, the neural mechanism responsible for context inference remains unknown. To address this issue, we propose a PFC-MD neural circuit model that utilizes a Hebbian plasticity rule to support rapid, online context inference. Specifically, the model MD thalamus can infer temporal contexts from prefrontal inputs within a few trials. This is achieved through the use of PFC-to-MD synaptic plasticity with pre-synaptic traces and adaptive thresholding, along with winner-take-all normalization in the MD. Furthermore, our model thalamus gates context-irrelevant neurons in the PFC, thus facilitating continual learning. We evaluate our model performance by having it sequentially learn various cognitive tasks. Incorporating an MD-like component alleviates catastrophic forgetting of previously learned contexts and demonstrates the transfer of knowledge to future contexts. Our work provides insight into how biological properties of thalamocortical circuits can be leveraged to achieve rapid context inference and continual learning.

摘要

认知灵活性是一种基本能力,使人类和动物能够在各种情境下表现出适当的行为。前额叶皮层(PFC)和中背侧丘脑(MD)之间的丘脑皮质相互作用被认为是推断时间背景的关键,而时间背景是认知灵活性的一个关键组成部分。然而,负责上下文推断的神经机制仍然未知。为了解决这个问题,我们提出了一个 PFC-MD 神经回路模型,该模型利用赫布氏可塑性规则来支持快速、在线的上下文推断。具体来说,该模型的 MD 丘脑可以在几次试验内从前额叶输入中推断出时间背景。这是通过使用具有前突触痕迹和自适应门限的 PFC 到 MD 的突触可塑性以及 MD 中的胜者全拿归一化来实现的。此外,我们的模型丘脑门控 PFC 中的与上下文无关的神经元,从而促进持续学习。我们通过让模型依次学习各种认知任务来评估模型性能。引入 MD 样组件可以缓解先前学习的上下文的灾难性遗忘,并展示了将知识转移到未来上下文的能力。我们的工作提供了关于如何利用丘脑皮质回路的生物特性来实现快速上下文推断和持续学习的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/5d5150175795/41467_2024_52289_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/1c2ce05178de/41467_2024_52289_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/6d6998a69f9d/41467_2024_52289_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/e4ab06fd3784/41467_2024_52289_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/9d1e1537fe54/41467_2024_52289_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/a0bd9515787d/41467_2024_52289_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/a95ba1e10398/41467_2024_52289_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/5d5150175795/41467_2024_52289_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/1c2ce05178de/41467_2024_52289_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/6d6998a69f9d/41467_2024_52289_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/e4ab06fd3784/41467_2024_52289_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/9d1e1537fe54/41467_2024_52289_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/a0bd9515787d/41467_2024_52289_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/a95ba1e10398/41467_2024_52289_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22a9/11436643/5d5150175795/41467_2024_52289_Fig7_HTML.jpg

相似文献

[1]
Rapid context inference in a thalamocortical model using recurrent neural networks.

Nat Commun. 2024-9-27

[2]
Mediodorsal thalamus regulates task uncertainty to enable cognitive flexibility.

Nat Commun. 2025-3-18

[3]
Differential Roles of Mediodorsal Nucleus of the Thalamus and Prefrontal Cortex in Decision-Making and State Representation in a Cognitive Control Task Measuring Deficits in Schizophrenia.

J Neurosci. 2020-1-15

[4]
Thalamocortical architectures for flexible cognition and efficient learning.

Trends Cogn Sci. 2024-8

[5]
Cortico-thalamocortical interactions for learning, memory and decision-making.

J Physiol. 2023-1

[6]
Gating of hippocampal-evoked activity in prefrontal cortical neurons by inputs from the mediodorsal thalamus and ventral tegmental area.

J Neurosci. 2003-5-1

[7]
Thalamic regulation of switching between cortical representations enables cognitive flexibility.

Nat Neurosci. 2018-11-19

[8]
Parallel inputs from the mediodorsal thalamus to the prefrontal cortex in the rat.

Eur J Neurosci. 2016-8

[9]
Hebbian Learning in a Random Network Captures Selectivity Properties of the Prefrontal Cortex.

J Neurosci. 2017-11-8

[10]
The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making.

Neurosci Biobehav Rev. 2015-7

引用本文的文献

[1]
Altered cortical thickness associated with psychotic symptoms and cognitive profiles in involuntarily hospitalized, first-episode, drug-naive patients with schizophrenia.

Front Psychiatry. 2025-6-24

[2]
Developing algorithmic psychiatry via multi-level spanning computational models.

Cell Rep Med. 2025-5-20

[3]
Mediodorsal thalamus regulates task uncertainty to enable cognitive flexibility.

Nat Commun. 2025-3-18

[4]
A prefrontal thalamocortical readout for conflict-related executive dysfunction in schizophrenia.

Cell Rep Med. 2024-11-19

本文引用的文献

[1]
The mediodorsal thalamus in executive control.

Neuron. 2024-3-20

[2]
A Neural Network Model of Continual Learning with Cognitive Control.

Cogsci. 2022-7

[3]
The Computational and Neural Bases of Context-Dependent Learning.

Annu Rev Neurosci. 2023-7-10

[4]
Continual task learning in natural and artificial agents.

Trends Neurosci. 2023-3

[5]
Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals.

PLoS Comput Biol. 2023-1

[6]
Fast rule switching and slow rule updating in a perceptual categorization task.

Elife. 2022-11-14

[7]
Thalamic regulation of frontal interactions in human cognitive flexibility.

PLoS Comput Biol. 2022-9

[8]
Linking task structure and neural network dynamics.

Nat Neurosci. 2022-6

[9]
The role of population structure in computations through neural dynamics.

Nat Neurosci. 2022-6

[10]
The geometry of domain-general performance monitoring in the human medial frontal cortex.

Science. 2022-5-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索