Suppr超能文献

采用响应面法(RSM)和人工神经网络(ANN)优化从魔芋块茎中提取淀粉,以提高产量和可接受的化学性质。

Optimization of starch extraction from Amorphophallus paeoniifolius corms using response surface methodology (RSM) and artificial neural network (ANN) for improving yield with tenable chemical attributes.

机构信息

Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.

Department of Microbiology, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.

出版信息

Int J Biol Macromol. 2023 May 15;237:124183. doi: 10.1016/j.ijbiomac.2023.124183. Epub 2023 Mar 25.

Abstract

The development of the extraction process for improving the starch yield from unconventional plants is emerging as a topic of interest. In this respect, the present work aimed to optimize the starch extraction from the corms of elephant foot yam (Amorphophallus paeoniifolius) with the help of response surface methodology (RSM) and artificial neural network (ANN). The RSM model performed better than the ANN in predicting the starch yield with higher precision. In this connection, this study for the first time reports the significant improvement of starch yield from A. paeoniifolius (51.76 g/100 g of the corm dry weight). The extracted starch samples based on yield - high (APHS), medium (APMS), and low (APLS) exhibited a variable granule size (7.17-14.14 μm) along with low ash content, moisture content, protein, and free amino acid indicating purity and desirability. The FTIR analysis also confirmed the chemical composition and purity of the starch samples. Moreover, the XRD analysis showed the prevalence of C-type starch (2θ = 14.303°). Based on other physicochemical, biochemical, functional, and pasting properties, the three starch samples showed more or less similar characteristics thereby indicating the sustentation of beneficial attributes of starch molecules irrespective of the variation in extraction parameters.

摘要

从非传统植物中提高淀粉产量的提取工艺的发展,正成为一个研究热点。在这方面,本工作旨在借助响应面法(RSM)和人工神经网络(ANN)优化从象耳芋(Amorphophallus paeoniifolius)球茎中提取淀粉。RSM 模型在预测淀粉得率方面比 ANN 表现更好,具有更高的精度。在这方面,本研究首次报道了显著提高象耳芋(A. paeoniifolius)淀粉得率(51.76 g/100 g 球茎干重)的方法。基于产量高(APHS)、中(APMS)和低(APLS)的提取淀粉样品,具有不同的颗粒大小(7.17-14.14 μm),同时灰分含量、水分含量、蛋白质和游离氨基酸含量低,表明其纯度和理想性。FTIR 分析也证实了淀粉样品的化学组成和纯度。此外,XRD 分析表明存在 C 型淀粉(2θ = 14.303°)。基于其他物理化学、生化、功能和糊化特性,三种淀粉样品表现出或多或少相似的特征,表明无论提取参数如何变化,淀粉分子的有益特性都得到了维持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验