Suppr超能文献

使用多变量方法优化从复杂食品基质中回收高附加值化合物

Optimizing Recovery of High-Added-Value Compounds from Complex Food Matrices Using Multivariate Methods.

作者信息

Liu Yixuan, Dar Basharat N, Makroo Hilal A, Aslam Raouf, Martí-Quijal Francisco J, Castagnini Juan M, Amigo Jose Manuel, Barba Francisco J

机构信息

Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.

Department of Food Technology, Islamic University of Science and Technology, Awantipora 192122, Jammu & Kashmir, India.

出版信息

Antioxidants (Basel). 2024 Dec 11;13(12):1510. doi: 10.3390/antiox13121510.

Abstract

In today's food industry, optimizing the recovery of high-value compounds is crucial for enhancing quality and yield. Multivariate methods like Response Surface Methodology (RSM) and Artificial Neural Networks (ANNs) play key roles in achieving this. This review compares their technical strengths and examines their sustainability impacts, highlighting how these methods support greener food processing by optimizing resources and reducing waste. RSM is valued for its structured approach to modeling complex processes, while ANNs excel in handling nonlinear relationships and large datasets. Combining RSM and ANNs offers a powerful, synergistic approach to improving predictive models, helping to preserve nutrients and extend shelf life. The review emphasizes the potential of RSM and ANNs to drive innovation and sustainability in the food industry, with further exploration needed for scalability and integration with emerging technologies.

摘要

在当今食品行业中,优化高价值化合物的回收对于提高质量和产量至关重要。响应面法(RSM)和人工神经网络(ANNs)等多变量方法在实现这一目标中发挥着关键作用。本综述比较了它们的技术优势,并审视了它们对可持续性的影响,强调了这些方法如何通过优化资源和减少浪费来支持更绿色的食品加工。RSM因其对复杂过程建模的结构化方法而受到重视,而ANNs在处理非线性关系和大型数据集方面表现出色。将RSM和ANNs相结合为改进预测模型提供了一种强大的协同方法,有助于保留营养成分并延长保质期。该综述强调了RSM和ANNs在推动食品行业创新和可持续性方面的潜力,还需要进一步探索其可扩展性以及与新兴技术的整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a368/11672994/e10fdfc4a093/antioxidants-13-01510-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验