Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
J Biosci Bioeng. 2023 Jun;135(6):474-479. doi: 10.1016/j.jbiosc.2023.03.005. Epub 2023 Mar 25.
Diphenyl ethers (DEs), which are widely used in the agricultural and chemical industries, have become hazardous contaminants in the environment. Although several DE-degrading bacteria have been reported, discovering new types of such microorganisms could enhance understanding of the degradation mechanism in the environment. In this study, we used a direct screening method based on detection of ether bond-cleaving activity to screen for microorganisms that degrade 4,4'-dihydroxydiphenyl ether (DHDE) as a model DE. Microorganisms isolated from soil samples were incubated with DHDE, and strains producing hydroquinone via ether bond cleavage were selected using hydroquinone-sensitive Rhodanine reagent. This screening procedure resulted in the isolation of 3 bacteria and 2 fungi that transform DHDE. Interestingly, all of the isolated bacteria belonged to one genus, Streptomyces. To our knowledge, these are the first microorganisms of the genus Streptomyces shown to degrade a DE. Streptomyces sp. TUS-ST3 exhibited high and stable DHDE-degrading activity. HPLC, LC-MS, and GC-MS analyses revealed that strain TUS-ST3 converts DHDE to its hydroxylated analogue and generates hydroquinone as an ether bond-cleavage product. Strain TUS-ST3 also transformed DEs other than DHDE. In addition, glucose-grown TUS-ST3 cells began to transform DHDE after incubation with this compound for 12 h, and produced 75 μM hydroquinone in 72 h. These activities of streptomycetes may play an important role in DE degradation in the environment. We also report the whole genome sequence of strain TUS-ST3.
二苯醚(DEs)广泛应用于农业和化工行业,已成为环境中的有害污染物。尽管已经报道了几种能够降解 DE 的细菌,但发现新的此类微生物可以增强对环境中降解机制的理解。在本研究中,我们使用了一种基于检测醚键断裂活性的直接筛选方法,筛选能够降解 4,4'-二羟基二苯醚(DHDE)作为模型 DE 的微生物。从土壤样品中分离的微生物与 DHDE 一起孵育,并使用对苯二酚敏感的罗丹明试剂选择通过醚键断裂产生对苯二酚的菌株。这种筛选程序导致分离出 3 种细菌和 2 种真菌,它们可以转化 DHDE。有趣的是,所有分离出的细菌都属于链霉菌属。据我们所知,这些是第一个被证明能够降解 DE 的链霉菌属微生物。链霉菌属 TUS-ST3 表现出高且稳定的 DHDE 降解活性。HPLC、LC-MS 和 GC-MS 分析表明,菌株 TUS-ST3 将 DHDE 转化为其羟基化类似物,并产生对苯二酚作为醚键断裂产物。菌株 TUS-ST3 还转化了除 DHDE 以外的 DEs。此外,用该化合物孵育 12 小时后,葡萄糖生长的 TUS-ST3 细胞开始转化 DHDE,并在 72 小时内产生 75 μM 对苯二酚。这些链霉菌的活性可能在 DE 在环境中的降解中发挥重要作用。我们还报告了菌株 TUS-ST3 的全基因组序列。