Suppr超能文献

高尔基器相关基因特征标志物预测甲状腺乳头癌患者无进展间隔。

Golgi-apparatus genes related signature for predicting the progression-free interval of patients with papillary thyroid carcinoma.

机构信息

Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China.

Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.

出版信息

BMC Med Genomics. 2023 Mar 27;16(1):60. doi: 10.1186/s12920-023-01485-z.

Abstract

BACKGROUND

We aimed to build a novel model with golgi apparatus related genes (GaGs) signature and relevant clinical parameters for predicting progression-free interval (PFI) after surgery for papillary thyroid carcinoma (PTC).

METHODS

We performed a bioinformatic analysis of integrated PTC datasets with the GaGs to identify differentially expressed GaGs (DE-GaGs). Then we generated PFI-related DE-GaGs and established a novel GaGs based signature. After that, we validated the signature on multiple external datasets and PTC cell lines. Further, we conducted uni- and multivariate analyses to identify independent prognostic characters. Finally, we established a signature and clinical parameters-based nomogram for predicting the PFI of PTC.

RESULTS

We identified 260 DE-GaGs related to PFI in PTC. The functional enrichment analysis showed that the DE-MTGs were associated with an essential oncogenic glycoprotein biosynthetic process. Consequently, we established and optimized a novel 11 gene signature that could distinguish patients with poorer prognoses and predicted PFI accurately. The novel signature had a C-index of 0.78, and the relevant nomogram had a C-index of 0.79. Also, it was closely related to the pivotal clinical characters of and anaplastic potential in datasets and PTC cell lines. And the signature was confirmed a significant independent prognostic factor in PTC. Finally, we built a nomogram by including the signature and relevant clinical factors. Validation analysis showed that the nomogram's efficacy was satisfying in predicting PTC's PFI.

CONCLUSION

The GaGs signature and nomogram were closely associated with PTC prognosis and may help clinicians improve the individualized prediction of PFI, especially for high-risk patients after surgery.

摘要

背景

我们旨在构建一个包含高尔基体相关基因(GaGs)标志物和相关临床参数的新型模型,以预测甲状腺乳头状癌(PTC)手术后无进展间隔期(PFI)。

方法

我们对包含 GaGs 的整合 PTC 数据集进行了生物信息学分析,以鉴定差异表达的 GaGs(DE-GaGs)。然后,我们生成了与 PFI 相关的 DE-GaGs,并建立了一个新的 GaGs 标志物。之后,我们在多个外部数据集和 PTC 细胞系上验证了该标志物。进一步,我们进行了单变量和多变量分析,以确定独立的预后特征。最后,我们建立了一个基于标志物和临床参数的列线图,用于预测 PTC 的 PFI。

结果

我们鉴定了 260 个与 PTC 中 PFI 相关的 DE-GaGs。功能富集分析表明,DE-MTGs 与重要的致癌糖蛋白生物合成过程有关。因此,我们建立并优化了一个新的 11 基因标志物,能够准确区分预后较差的患者并预测 PFI。该新型标志物的 C 指数为 0.78,相关列线图的 C 指数为 0.79。此外,它与数据集和 PTC 细胞系中的关键临床特征和间变性潜能密切相关。该标志物在 PTC 中被证实是一个显著的独立预后因素。最后,我们通过包含标志物和相关临床因素构建了一个列线图。验证分析表明,该列线图在预测 PTC 的 PFI 方面具有令人满意的疗效。

结论

GaGs 标志物和列线图与 PTC 的预后密切相关,可能有助于临床医生改善 PFI 的个体化预测,特别是对手术后的高危患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9fb/10041766/b7039712f1bb/12920_2023_1485_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验