Suppr超能文献

基于平衡化算法的支持向量机在轻度创伤性脑损伤诊断和预后中的弥散张量成像研究:CENTER-TBI 研究。

Use of Support Vector Machines Approach via ComBat Harmonized Diffusion Tensor Imaging for the Diagnosis and Prognosis of Mild Traumatic Brain Injury: A CENTER-TBI Study.

机构信息

Department of Radiology, Antwerp University Hospital, Antwerp, Belgium.

imec-Vision Lab, University of Antwerp, Antwerp, Belgium.

出版信息

J Neurotrauma. 2023 Jul;40(13-14):1317-1338. doi: 10.1089/neu.2022.0365. Epub 2023 May 18.

Abstract

The prediction of functional outcome after mild traumatic brain injury (mTBI) is challenging. Conventional magnetic resonance imaging (MRI) does not do a good job of explaining the variance in outcome, as many patients with incomplete recovery will have normal-appearing clinical neuroimaging. More advanced quantitative techniques such as diffusion MRI (dMRI), can detect microstructural changes not otherwise visible, and so may offer a way to improve outcome prediction. In this study, we explore the potential of linear support vector classifiers (linearSVCs) to identify dMRI biomarkers that can predict recovery after mTBI. Simultaneously, the harmonization of fractional anisotropy (FA) and mean diffusivity (MD) via ComBat was evaluated and compared for the classification performances of the linearSVCs. We included dMRI scans of 179 mTBI patients and 85 controls from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI), a multi-center prospective cohort study, up to 21 days post-injury. Patients were dichotomized according to their Extended Glasgow Outcome Scale (GOSE) scores at 6 months into complete ( = 92; GOSE = 8) and incomplete ( = 87; GOSE <8) recovery. FA and MD maps were registered to a common space and harmonized via the ComBat algorithm. LinearSVCs were applied to distinguish: (1) mTBI patients from controls and (2) mTBI patients with complete from those with incomplete recovery. The linearSVCs were trained on (1) age and sex only, (2) non-harmonized, (3) two-category-harmonized ComBat, and (4) three-category-harmonized ComBat FA and MD images combined with age and sex. White matter FA and MD voxels and regions of interest (ROIs) within the John Hopkins University (JHU) atlas were examined. Recursive feature elimination was used to identify the 10% most discriminative voxels or the 10 most discriminative ROIs for each implementation. mTBI patients displayed significantly higher MD and lower FA values than controls for the discriminative voxels and ROIs. For the analysis between mTBI patients and controls, the three-category-harmonized ComBat FA and MD voxel-wise linearSVC provided significantly higher classification scores (81.4% accuracy, 93.3% sensitivity, 80.3% F1-score, and 0.88 area under the curve [AUC],  < 0.05) compared with the classification based on age and sex only and the ROI approaches (accuracies: 59.8% and 64.8%, respectively). Similar to the analysis between mTBI patients and controls, the three-category-harmonized ComBat FA and MD maps voxelwise approach yields statistically significant prediction scores between mTBI patients with complete and those with incomplete recovery (71.8% specificity, 66.2% F1-score and 0.71 AUC,  < 0.05), which provided a modest increase in the classification score (accuracy: 66.4%) compared with the classification based on age and sex only and ROI-wise approaches (accuracy: 61.4% and 64.7%, respectively). This study showed that ComBat harmonized FA and MD may provide additional information for diagnosis and prognosis of mTBI in a multi-modal machine learning approach. These findings demonstrate that dMRI may assist in the early detection of patients at risk of incomplete recovery from mTBI.

摘要

轻度创伤性脑损伤(mTBI)后功能预后的预测具有挑战性。常规磁共振成像(MRI)在解释预后的差异方面表现不佳,因为许多恢复不完全的患者临床神经影像学表现正常。更先进的定量技术,如扩散 MRI(dMRI),可以检测到其他方法无法检测到的微观结构变化,因此可能提供一种改善预后预测的方法。在这项研究中,我们探索了线性支持向量分类器(linearSVC)的潜力,以识别可以预测 mTBI 后恢复的 dMRI 生物标志物。同时,通过 ComBat 评估和比较了各向异性分数(FA)和平均扩散系数(MD)的调和,并比较了线性 SVC 的分类性能。我们纳入了来自协作欧洲神经创伤有效性研究在创伤性脑损伤(CENTER-TBI)的 179 名 mTBI 患者和 85 名对照者的 dMRI 扫描,这是一项多中心前瞻性队列研究,在损伤后最多 21 天。根据他们在 6 个月时的扩展格拉斯哥结局量表(GOSE)评分,患者分为完全( = 92;GOSE = 8)和不完全( = 87;GOSE <8)恢复。FA 和 MD 图被注册到一个共同的空间,并通过 ComBat 算法进行调和。线性 SVC 用于区分:(1)mTBI 患者与对照者,以及(2)mTBI 患者与完全恢复者与不完全恢复者。线性 SVC 基于(1)年龄和性别、(2)非调和、(3)两类别调和 ComBat 和(4)结合年龄和性别的三类别调和 ComBat FA 和 MD 图像进行训练。检查了约翰霍普金斯大学(JHU)图谱内的白质 FA 和 MD 体素和感兴趣区(ROI)。使用递归特征消除来识别每种实现的 10%最具判别性的体素或 10 个最具判别性的 ROI。与对照组相比,mTBI 患者的 MD 值显著升高,FA 值显著降低,用于判别体素和 ROI。对于 mTBI 患者与对照组之间的分析,基于三类别调和 ComBat FA 和 MD 体素的线性 SVC 提供了显著更高的分类评分(81.4%准确性、93.3%敏感性、80.3%F1 分数和 0.88 曲线下面积[AUC],  < 0.05),与仅基于年龄和性别以及 ROI 方法的分类相比(准确率:59.8%和 64.8%)。与 mTBI 患者与对照组之间的分析类似,基于三类别调和 ComBat FA 和 MD 图的体素方法在 mTBI 患者完全和不完全恢复之间产生了具有统计学意义的预测评分(71.8%特异性、66.2%F1 分数和 0.71 AUC,  < 0.05),与仅基于年龄和性别以及 ROI 方法的分类相比(准确率:66.4%)略有提高(准确率:61.4%和 64.7%)。这项研究表明,ComBat 调和的 FA 和 MD 可能在多模态机器学习方法中为 mTBI 的诊断和预后提供额外的信息。这些发现表明 dMRI 可能有助于早期发现 mTBI 恢复不完全的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验