College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
Northwest Institute of Nuclear Technology, Xi'an, 710024, China.
Adv Mater. 2023 Jun;35(25):e2209452. doi: 10.1002/adma.202209452. Epub 2023 Apr 28.
State-of-the-art thermal neutron scintillation detectors rely on rare isotopes for neutron capture, lack stability and scalability of solid-state scintillation devices, and poorly discriminate between the neutron and gamma rays. The boron nitride (BN)-CsPbBr perovskite nanocomposite aerogel scintillator enables discriminative detection of thermal neutrons, features the largest known size (9 cm across), the lowest density (0.17 g cm ) among the existing scintillation materials, high BN (50%) perovskite (1%) contents, high optical transparency (85%), and excellent radiation stability. The new detection mechanism relies on thermal neutron capture by B and effective energy transfer from the charged particles to visible-range scintillation photons between the densely packed BN and CsPbBr nanocrystals. Low density minimizes the gamma ray response. The neutrons and gamma rays are discriminated by complete decoupling of the respective single pulses in time and intensity. These outcomes open new avenues for neutron detection in resource exploration, clean energy, environmental, aerospace, and homeland security applications.
先进的热中子闪烁探测器依赖于稀有同位素进行中子捕获,缺乏固态闪烁探测器的稳定性和可扩展性,并且难以区分中子和伽马射线。氮化硼 (BN)-CsPbBr 钙钛矿纳米复合气凝胶闪烁体能够对热中子进行有区别的探测,具有已知最大尺寸(9 厘米)、现有闪烁材料中最低密度(0.17 克/厘米 )、高 BN(50%)钙钛矿(1%)含量、高光学透明度(85%)和优异的辐射稳定性。新的探测机制依赖于 B 对热中子的捕获以及在密集堆积的 BN 和 CsPbBr 纳米晶体之间,带电粒子将能量有效转移到可见光范围内的闪烁光子。低密度使伽马射线响应最小化。通过时间和强度上各自单个脉冲的完全解耦,来区分中子和伽马射线。这些结果为资源勘探、清洁能源、环境、航空航天和国土安全应用中的中子探测开辟了新途径。