McDaniel R V, Sharp K, Brooks D, McLaughlin A C, Winiski A P, Cafiso D, McLaughlin S
Biophys J. 1986 Mar;49(3):741-52. doi: 10.1016/S0006-3495(86)83700-6.
We formed vesicles from mixtures of egg phosphatidylcholine (PC) and the gangliosides GM1, GD1a, or GT1 to model the electrokinetic properties of biological membranes. The electrophoretic mobilities of the vesicles are similar in NaCl, CsCl, and TMACl solutions, suggesting that monovalent cations do not bind significantly to these gangliosides. If we assume the sialic acid groups on the gangliosides are located some distance from the surface of the vesicle and the sugar moieties exert hydrodynamic drag, we can describe the mobility data in 1, 10, and 100 mM monovalent salt solutions with a combination of the Navier-Stokes and nonlinear Poisson-Boltzmann equations. The values we assume for the thickness of the ganglioside head group and the location of the charge affect the theoretical predictions markedly, but the Stokes radius of each sugar and the location of the hydrodynamic shear plane do not. We obtain a reasonable fit to the mobility data by assuming that all ganglioside head groups project 2.5 nm from the bilayer and all fixed charges are in a plane 1 nm from the bilayer surface. We tested the latter assumption by estimating the surface potentials of PC/ganglioside bilayers using four techniques: we made 31P nuclear magnetic resonance, fluorescence, electron spin resonance, and conductance measurements. The results are qualitatively consistent with our assumption.
我们用卵磷脂(PC)与神经节苷脂GM1、GD1a或GT1的混合物形成囊泡,以模拟生物膜的电动特性。这些囊泡在NaCl、CsCl和TMACl溶液中的电泳迁移率相似,这表明单价阳离子不会与这些神经节苷脂发生显著结合。如果我们假设神经节苷脂上的唾液酸基团位于离囊泡表面一定距离处,且糖部分产生流体动力阻力,那么我们可以用纳维-斯托克斯方程和非线性泊松-玻尔兹曼方程的组合来描述在1 mM、10 mM和100 mM单价盐溶液中的迁移率数据。我们假设的神经节苷脂头部基团厚度和电荷位置的值对理论预测有显著影响,但每个糖的斯托克斯半径和流体动力剪切平面的位置则没有影响。通过假设所有神经节苷脂头部基团从双层膜突出2.5 nm,且所有固定电荷位于离双层膜表面1 nm的平面内,我们对迁移率数据进行了合理拟合。我们使用四种技术来估计PC/神经节苷脂双层膜的表面电位,以此来检验后一个假设:我们进行了31P核磁共振、荧光、电子自旋共振和电导率测量。结果在定性上与我们的假设一致。