Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States.
Michigan Center for Materials Characterization, University of Michigan, Ann Arbor, Michigan 48109, United States.
ACS Appl Mater Interfaces. 2023 Apr 12;15(14):18022-18031. doi: 10.1021/acsami.2c22798. Epub 2023 Mar 28.
Achieving ferroelectricity in III-nitride (III-N) semiconductors by alloying with rare-earth elements, e.g., scandium, has presented a pivotal step toward next-generation electronic, acoustic, photonic, and quantum devices and systems. To date, however, the conventional growth of single-crystalline nitride semiconductors often requires the use of sapphire, Si, or SiC substrate, which has prevented their integration with the workhorse complementary metal oxide semiconductor (CMOS) technology. Herein, we demonstrate single-crystalline ferroelectric nitride semiconductors grown on CMOS compatible metal-molybdenum. Significantly, we find that a unique epitaxial relationship between wurtzite and body-centered cubic crystal structure can be well maintained, enabling the realization of single-crystalline wurtzite ferroelectric nitride semiconductors on polycrystalline molybdenum that was not previously possible. Robust and wake-up-free ferroelectricity has been measured, for the first time, in the epitaxially grown ScAlN directly on metal. We further propose and demonstrate a ferroelectric GaN/ScAlN heterostructure for synaptic memristor, which shows the capability of emulating the spike-time-dependent plasticity in a biological synapse. This work provides a viable path for the integration of III-N architectures with the mature CMOS technology and sheds light on the promising applications of ferroelectric nitride memristors in neuromorphic computing.
通过与稀土元素(例如钪)合金化在 III 族氮化物(III-N)半导体中实现铁电性,为下一代电子、声学、光子学和量子设备和系统的发展迈出了关键一步。然而,迄今为止,通常需要使用蓝宝石、Si 或 SiC 衬底来实现单晶氮化物半导体的常规生长,这阻碍了它们与主流互补金属氧化物半导体(CMOS)技术的集成。在此,我们展示了在与 CMOS 兼容的金属钼上生长的单晶铁电氮化物半导体。重要的是,我们发现纤锌矿和体心立方晶体结构之间可以很好地保持独特的外延关系,从而能够在以前不可能的多晶钼上实现单晶纤锌矿铁电氮化物半导体。首次在金属上直接外延生长的 ScAlN 中测量到了稳健且无唤醒的铁电性。我们进一步提出并展示了用于突触记忆体的 GaN/ScAlN 异质结构,该结构展示了在生物突触中模拟尖峰时间依赖性可塑性的能力。这项工作为 III-N 架构与成熟的 CMOS 技术的集成提供了可行的途径,并为铁电氮化物记忆体在神经形态计算中的应用提供了前景。