Suppr超能文献

用于突触权重的后端、CMOS兼容铁电场效应晶体管。

Back-End, CMOS-Compatible Ferroelectric Field-Effect Transistor for Synaptic Weights.

作者信息

Halter Mattia, Bégon-Lours Laura, Bragaglia Valeria, Sousa Marilyne, Offrein Bert Jan, Abel Stefan, Luisier Mathieu, Fompeyrine Jean

机构信息

IBM Research GmbH-Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland.

Integrated Systems Laboratory, ETH Zurich, CH-8092 Zurich, Switzerland.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 15;12(15):17725-17732. doi: 10.1021/acsami.0c00877. Epub 2020 Apr 1.

Abstract

Neuromorphic computing architectures enable the dense colocation of memory and processing elements within a single circuit. This colocation removes the communication bottleneck of transferring data between separate memory and computing units as in standard von Neuman architectures for data-critical applications including machine learning. The essential building blocks of neuromorphic systems are nonvolatile synaptic elements such as memristors. Key memristor properties include a suitable nonvolatile resistance range, continuous linear resistance modulation, and symmetric switching. In this work, we demonstrate voltage-controlled, symmetric and analog potentiation and depression of a ferroelectric HfZrO (HZO) field-effect transistor (FeFET) with good linearity. Our FeFET operates with low writing energy (fJ) and fast programming time (40 ns). Retention measurements have been performed over 4 bit depth with low noise (1%) in the tungsten oxide (WO) readout channel. By adjusting the channel thickness from 15 to 8 nm, the on/off ratio of the FeFET can be engineered from 1 to 200% with an on-resistance ideally >100 kΩ, depending on the channel geometry. The device concept is using earth-abundant materials and is compatible with a back end of line (BEOL) integration into complementary metal-oxide-semiconductor (CMOS) processes. It has therefore a great potential for the fabrication of high-density, large-scale integrated arrays of artificial analog synapses.

摘要

神经形态计算架构能够在单个电路中实现内存和处理元件的密集共置。这种共置消除了在标准冯·诺依曼架构中,在单独的内存和计算单元之间传输数据时出现的通信瓶颈,适用于包括机器学习在内的数据关键型应用。神经形态系统的基本构建块是非易失性突触元件,如忆阻器。忆阻器的关键特性包括合适的非易失性电阻范围、连续线性电阻调制和对称开关。在这项工作中,我们展示了具有良好线性度的铁电HfZrO(HZO)场效应晶体管(FeFET)的电压控制、对称和模拟增强及抑制。我们的FeFET以低写入能量(fJ)和快速编程时间(40 ns)运行。在氧化钨(WO)读出通道中,已在4位深度上进行了低噪声(1%)的保持测量。通过将沟道厚度从15 nm调整到8 nm,根据沟道几何形状,FeFET的开/关比可从1调整到200%,理想情况下导通电阻>100 kΩ。该器件概念采用地球上储量丰富的材料,并且与互补金属氧化物半导体(CMOS)工艺的后端线路(BEOL)集成兼容。因此,它在制造高密度、大规模集成的人工模拟突触阵列方面具有巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验