Suppr超能文献

对纳米多孔氧化硅薄膜中水分子在铁离子上渗透的机制研究,有助于选择性的析氢和析氧。

Mechanistic Insights on Permeation of Water over Iron Cations in Nanoporous Silicon Oxide Films for Selective H and O Evolution.

机构信息

Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.

Chemical Engineering Department, Columbia Electrochemical Energy Center, Columbia University, New York, New York 10027, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Apr 12;15(14):17814-17824. doi: 10.1021/acsami.2c22865. Epub 2023 Mar 28.

Abstract

Electrocatalysts encapsulated by an ultrathin and semipermeable oxide layer offer a promising avenue for efficient, selective, and cost-effective production of hydrogen through photoelectrochemical water splitting. This architecture is especially attractive for Z-scheme water splitting, for which a nanoporous oxide film can be leveraged to mitigate undesired, yet kinetically facile, reactions involving redox shuttles, such as aqueous iron cations, by limiting transport of these species to catalytically active sites. In this work, molecular dynamics simulations were combined with electrochemical measurements to provide a mechanistic understanding of permeation of water and Fe(III)/Fe(II) redox shuttles through nanoporous SiO films. It is shown that even for SiO pores with a width as small as 0.8 nm, water does not experience any energy barrier for permeating into the pores due to a favorable interaction with hydrophilic silanol groups on the oxide surface. In contrast, permeation of Fe(III) and Fe(II) into microporous SiO pores is limited due to high energy barriers, which stem from a combination of distortion and dehydration of the second and third ion solvation shells. Our simulations and experimental results show that SiO coatings can effectively mitigate undesired Fe(III)/Fe(II) redox reactions at underlying electrodes by attenuating permeation of iron cations, while allowing water to permeate and thus participate in water splitting reactions. In a broader context, our study demonstrates that selectivity of solvated cations can be manipulated by controlling the pore size and surface chemistry of oxide films.

摘要

通过光电化学水分解高效、选择性和具有成本效益地生产氢气的一种很有前景的方法是将超薄膜和半渗透氧化物层包裹的电催化剂。这种结构对于 Z 型水分解特别有吸引力,因为可以利用多孔氧化膜来减轻涉及氧化还原穿梭剂(例如,水合铁阳离子)的不希望发生但动力学上容易发生的反应,方法是将这些物质限制在催化活性部位的传输。在这项工作中,将分子动力学模拟与电化学测量相结合,以提供通过纳米多孔 SiO 膜渗透水和 Fe(III)/Fe(II)氧化还原穿梭剂的机理理解。结果表明,即使对于宽度小至 0.8nm 的 SiO 孔,由于与氧化物表面的亲水性硅醇基团的有利相互作用,水也不会经历任何渗透到孔中的能量障碍。相比之下,由于第二和第三离子溶剂化壳的变形和脱水的组合,Fe(III)和 Fe(II)渗透到微孔 SiO 孔中受到限制,这导致能量障碍很高。我们的模拟和实验结果表明,SiO 涂层可以通过衰减铁阳离子的渗透,有效减轻底层电极上不希望发生的 Fe(III)/Fe(II)氧化还原反应,同时允许水渗透并参与水分解反应。从更广泛的角度来看,我们的研究表明可以通过控制氧化物膜的孔径和表面化学来操纵溶剂化阳离子的选择性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验