Suppr超能文献

利用模型双位点电催化剂平台上的区域选择性原子层沉积实现光催化剂反应选择性的空间控制。

Toward Spatial Control of Reaction Selectivity on Photocatalysts Using Area-Selective Atomic Layer Deposition on the Model Dual Site Electrocatalyst Platform.

作者信息

McNeary W Wilson, Stinson William D H, Waqar Moaz, Zang Wenjie, Pan Xiaoqing, Esposito Daniel V, Hurst Katherine E

机构信息

Catalytic Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

Department of Chemical Engineering, Columbia Electrochemical Engineering Center, Lenfest Center for Sustainable Energy, Columbia University in the City of New York, New York, New York 10027, United States.

出版信息

ACS Nano. 2024 Dec 24;18(51):34708-34719. doi: 10.1021/acsnano.4c10387. Epub 2024 Dec 9.

Abstract

Photocatalytic water splitting is a promising route to low-cost, green H. However, this approach is currently limited in its solar-to-hydrogen conversion efficiency. One major source of efficiency loss is attributed to the high rates of undesired side and back reactions, which are exacerbated by the proximity of neighboring oxidation and reduction sites. Nanoscopic oxide coatings have previously been used to selectively block undesired reactants from reaching active sites; however, a coating encapsulating the entire photocatalyst particle limits activity as it cannot facilitate both half-reactions. In this work, area selective atomic layer deposition (AS-ALD) was used to selectively deposit semipermeable TiO films onto model metallic cocatalysts for enhancing reaction selectivity while maintaining a high overall activity. Pt and Au were used as exemplary reduction and oxidation cocatalyst sites, respectively, where Au was deactivated toward ALD growth through self-assembled thiol monolayers while TiO was coated onto Pt sites. Electroanalytical measurements of monometallic thin film electrodes showed that the TiO-encapsulated Pt effectively suppressed undesired H oxidation and Fe(II)/Fe(III) redox reactions while still permitting the desired hydrogen evolution reaction (HER). A planar model photocatalyst platform containing patterned interdigitated arrays of Au and Pt microelectrodes was further assessed using scanning electrochemical microscopy (SECM), demonstrating the successful use of AS-ALD to enable local reaction selectivity in a dual-reaction-site (photo)electrocatalytic system. Finally, interdigitated microelectrodes having independent potential control were used to show that selectively deposited TiO coatings can suppress the rate of back reactions on neighboring active sites by an order of magnitude compared with uncoated control samples.

摘要

光催化水分解是一种很有前景的低成本绿色制氢途径。然而,目前这种方法的太阳能到氢能的转换效率有限。效率损失的一个主要来源是不期望的副反应和逆反应速率很高,相邻的氧化和还原位点距离较近会加剧这种情况。纳米氧化物涂层此前已被用于选择性地阻止不期望的反应物到达活性位点;然而,包裹整个光催化剂颗粒的涂层会限制活性,因为它无法促进两个半反应。在这项工作中,采用区域选择性原子层沉积(AS-ALD)在模型金属助催化剂上选择性地沉积半透性TiO薄膜,以提高反应选择性,同时保持较高的整体活性。分别使用Pt和Au作为示例性的还原和氧化助催化剂位点,其中通过自组装硫醇单层使Au对ALD生长失活,同时将TiO涂覆在Pt位点上。单金属薄膜电极的电分析测量表明,TiO包裹的Pt有效地抑制了不期望的H氧化和Fe(II)/Fe(III)氧化还原反应,同时仍允许发生期望的析氢反应(HER)。使用扫描电化学显微镜(SECM)进一步评估了一个包含图案化叉指状Au和Pt微电极阵列的平面模型光催化剂平台,证明了AS-ALD成功用于在双反应位点(光)电催化系统中实现局部反应选择性。最后,使用具有独立电位控制的叉指状微电极表明,与未涂覆的对照样品相比,选择性沉积的TiO涂层可以将相邻活性位点上的逆反应速率抑制一个数量级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a08/11673572/1e35a301aa13/nn4c10387_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验