Joly Jean-Patrick, Aricov Ludmila, Balan George-Alin, Popescu Elena Irina, Mocanu Sorin, Leonties Anca Ruxandra, Matei Iulia, Marque Sylvain R A, Ionita Gabriela
Aix Marseille University, CNRS, Institut de Chimie Radicalaire, UMR 7273, Case 551, Avenue Escadrille Normandie-Niemen, CEDEX 20, 13397 Marseille, France.
"Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania.
Gels. 2023 Mar 16;9(3):231. doi: 10.3390/gels9030231.
This study analyzes the physico-chemical properties of interpenetrated polymer networks (IPNs) and semi-IPN resulting from cross-linking chitosan with glutaraldehyde and alginate with Ca cations, as a function of the order in which the cross-linking agents are added to the polymer mixture. Three physico-chemical methods were used to assess the differences between systems: rheology, IR spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. While rheology and IR spectroscopy are commonly used to characterize gel materials, EPR spectroscopy is rarely used, but has the advantage of providing local information about the dynamics of a system. The rheological parameters, which describe the global behavior of the samples, show that semi-IPN systems have a weaker gel behavior and the order of introducing the cross-linker in the polymer systems plays a role. The IR spectra of samples resulting by adding only Ca or Ca as the first cross-linker are similar to that of the alginate gel, while the spectra of samples in which glutaraldehyde is firstly added resemble the chitosan gel spectrum. Using spin-labeled alginate and spin-labeled chitosan, we monitored the changes occurring in the dynamic of the spin labels due to the formation of IPN and semi-IPN. The results show that the order of adding the cross-linking agents influences the dynamic of the IPN network, and that the formation of the alginate network determines the characteristics of the entire IPN system. The EPR data were correlated with the rheological parameters and IR spectra of the analyzed samples.
本研究分析了通过壳聚糖与戊二醛交联以及藻酸盐与钙离子交联形成的互穿聚合物网络(IPN)和半互穿聚合物网络(semi-IPN)的物理化学性质,该性质是交联剂添加到聚合物混合物中的顺序的函数。使用了三种物理化学方法来评估不同体系之间的差异:流变学、红外光谱和电子顺磁共振(EPR)光谱。虽然流变学和红外光谱常用于表征凝胶材料,但EPR光谱很少使用,但其优点是能提供有关体系动力学的局部信息。描述样品整体行为的流变学参数表明,半互穿聚合物网络体系的凝胶行为较弱,且交联剂在聚合物体系中的引入顺序起到了作用。仅添加钙离子或首先添加钙离子作为交联剂所得到的样品的红外光谱与藻酸盐凝胶的光谱相似,而首先添加戊二醛的样品的光谱则类似于壳聚糖凝胶光谱。使用自旋标记的藻酸盐和自旋标记的壳聚糖,我们监测了由于互穿聚合物网络和半互穿聚合物网络的形成而导致的自旋标记动力学变化。结果表明,交联剂的添加顺序会影响互穿聚合物网络的动力学,并且藻酸盐网络的形成决定了整个互穿聚合物网络体系的特性。电子顺磁共振数据与所分析样品的流变学参数和红外光谱相关联。