Suppr超能文献

基于机器学习和信息学的模型聚烯烃升级为芳烃的反应途径阐明。

Machine Learning and Informatics Based Elucidation of Reaction Pathways for Upcycling Model Polyolefin to Aromatics.

机构信息

Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.

出版信息

J Phys Chem A. 2023 Apr 6;127(13):2958-2966. doi: 10.1021/acs.jpca.3c01444. Epub 2023 Mar 28.

Abstract

Catalytic upcycling of plastics results in a complex network of potentially thousands of reactions and intermediates. Manual analysis of such a network using ab initio methods to identify plausible reaction pathways and rate-controlling steps is intractable. Here, we combine informatics-based reaction network generation and machine learning based thermochemistry calculation to identify plausible (nonelementary step) pathways involved in dehydroaromatization of a model polyolefin, -decane, to form aromatic products. All 78 aromatic molecules found involve a sequence comprising dehydrogenation, β-scission, and cyclization steps (in slightly different order). The plausible flux-carrying pathway depends on the family of reactions that is rate-controlling while the thermodynamic bottleneck is the first dehydrogenation step of -decane. The adopted workflow is system agnostic and can be applied to understand the overall thermochemistry of other upcycling systems.

摘要

塑料的催化升级转化会产生一个潜在的包含数千个反应和中间体的复杂网络。使用从头算方法对这样的网络进行手动分析,以识别可能的反应途径和速率控制步骤,这是难以处理的。在这里,我们结合基于信息论的反应网络生成和基于机器学习的热化学计算,来识别涉及模型聚烯烃(-癸烷)脱氢芳构化形成芳香产物的可能(非基本步骤)途径。所有发现的 78 种芳香族分子都涉及一个包含脱氢、β 断裂和环化步骤的序列(略有不同的顺序)。可能的通量承载途径取决于作为速率控制步骤的反应家族,而热力学瓶颈是 -癸烷的第一个脱氢步骤。所采用的工作流程是与系统无关的,可以应用于理解其他升级转化系统的整体热化学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f964/10249406/87949ea38004/jp3c01444_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验